
LabVIEW Reference 

I. LabVIEW Help 
To access the LabVIEW help reference, click LabVIEW Tutorial on the startup box 
(Find Examples is also a helpful resource with example VIs) or select Help >> VI, 
Function, & How-To Help… from either the front panel or block diagram.  There are 
also LabVIEW manuals under Help >> Search the LabVIEW Bookshelf… for an 
even more in-depth study of LabVIEW mechanics. 

To access help on individual nodes of a VI, select Help >> Show Context Help to 
display context help.  Context help is a window that displays reference information for 
the LabVIEW element near the cursor.  It will help you figure out what each node does 
and understand how the VI (LabVIEW code has a .vi extension) works when you are 
trying to examine example code.  It also contains a link to more information about the 
element. 

The LabVIEW help reference is an incredible resource for learning and understanding 
LabVIEW mechanics.  Included in the reference are a number of example VIs and many 
step-by-step tutorials.  You will most likely be able to find an example somewhere that 
nearly implements the function you want to program using LabVIEW—the Internet is a 
good resource as well.  The LabVIEW help reference is nearly all you will need to learn 
LabVIEW.  This reference sheet will point out the things that LabVIEW can do and 
describe some of its mechanics without the depth the LabVIEW help reference has. 

II. Interface 
When you create a new VI, two windows will pop up.  The first window is known as the 
front panel and the second as the block diagram. 

Front Panel 
The purpose of the front panel is user-interface.  On the front panel you will place the 
controls, indicators, charts and graphs, etc. that the user needs to see and possibly use.  
You can access the front panel from the block diagram by selecting Window >> Show 
Panel. 

You can align controls on the front panel using the Align Objects pull-down button on 
the tool bar. 

Block Diagram 
The block diagram contains the meat of the program.  Herein lie all the internal 
workings and background operations of the code.  On the block diagram you will place 
nodes, wires, structures, etc.  You can access the block diagram from the front panel 
by selecting Window >> Show Diagram. 



 2

Palettes 
To display a palette select Window >> Show [Palette Name] Palette.  This will display 
the palette in locked mode, which means that the palette will remain in that position until 
it is closed (if you are using the controls palette and switch to the block diagram, the 
controls palette will be closed and the functions palette opened.)  Another way to 
display the controls palette/functions palette is to right-click using any tool on either 
the front panel or block diagram, and the corresponding palette will be displayed in 
unlocked mode.  When I direct you to Controls Palette or Functions Palette to access a 
certain control or Function I will write it like Controls >> [Section] >> [Control 
Name] or Functions >> [Section] >> [Function Name].  To change a palette to locked 
mode, click the pushpin in the upper-left corner.   

 
Figure 1.  Functions Palette 

 

Pushpin

Figure 2. Controls Palette 

 
Figure 3.  Tools Palette 

Tools and Shortcuts 
LabVIEW uses different tools to program your VI.  These can be accessed from the 
Tools Palette—if it is open—or by pressing tab until the tool you want is displayed as 



 3

the cursor (I have set the small button on the left side of the mouse in this lab as the tab 
button to make this oft used task quicker).  To display the Tools Palette, select Window 
>> Show Tools Palette.  Below is a description of the tools in the Tools Palette.  From 
this list, only the operate value, position/size/select, edit text, and connect wire tools 
are available when using the tab key in the block diagram, and only the operate value, 
position/size/select, edit text, and set color tools are available when using the tab key in 
the front panel. 

Automatic Tool Selection – This option is the top button of the Tools Palette.  
It automatically selects the tools based on the context of the cursor location. 

Operate Value – Use this tool to change the value of a control or constant, click on 
buttons, switch between the frames of a structure, etc.  This will be one of the tools—
along with the probe data tool—available when the VI is running. 

Position/Size/Select – This is the tool you will use most often.  Use it to position 
nodes, move wires, resize structures and constant boxes, switch between the frames of 
a structure, resize a node to include more input/output connectors, select a section of 
code to copy it (with Ctrl | C), etc. 

Edit Text – This tool edits any text in the VI, including values in a control or 
constant (that aren’t symbolic), and case headings. 

Connect Wire – This tool is only used on the block diagram.  Use it to connect 
nodes in the block diagram by selecting one output connector and one input 
connector.  When you place the connect wire tool over a node, the connector that you 
are on top of will begin blinking.  Also, if context help is open, the connector will blink 
in that window as well.  This will help you make sure to select the correct connector. 

After you connect two connectors, one of two things will happen.  Either a wire will 
form between them color-coded with the data type it is carrying, or the wire will become 
a dashed line.  If the wire is a dashed line, this means that you have made an error.  
Usually, the error will be that you connected two different data types or you connected 
two input connectors (or two output connectors) together. 

If you hold the connect wire tool over a wire, context help will show you what data 
type is flowing through the wire.  If you hold the tool over a dashed wire, a dialog will 
appear describing the error that is causing the wire to be dashed. 

Object Shortcut Menu – This tool is the same thing as a right-click using any tool 
on either the front panel or block diagram.  It displays the Controls Palette/Functions 
Palette depending on whether you are in the front panel or block diagram. 

Scroll Window – This tool has the same function as the hand in Adobe Acrobat:  it 
allows you to move around the front panel/block diagram by clicking and dragging. 

Set/Clear Breakpoint – This tool, represented by the stop sign, is used for 
troubleshooting the VI.  Refer to the LabVIEW help reference. 



 4

Probe Data – This tool, represented by the circled ‘p’ with an arrow through it, is 
used for troubleshooting the VI.  Refer to the LabVIEW help reference. 

Get Color – This tool is useful for changing background colors in the VI. 

Set Color – This tool is useful for changing background colors in the VI. 

III.  Data Types 
Below is a list of the data types used in LabVIEW.  The first image before each data 
type represents a control on the block diagram, which outputs that data type (note 
the solid outer line).  The second image represents an indicator on the block 
diagram, which inputs that data type.  Both symbols are rectangles, color-coded, and 
the data type is written on the inside.  LabVIEW also draws an arrow on either the 
right or the left side of these symbols to indicate if the symbol represents an input or 
an output connector (e.g.  represents an output connector of the type double 
and  represents an input connector of the type double). 

   Dashed Line:  indicates an error either in mismatched datatypes 
or connector types. 

   Polymorphic:   means that this node can accept multiple data 

types.  A ‘POLY’ indicator in brackets, , indicates an 
array of any data type.  It is the generic data type for most of 
the array nodes. 

   Numeric:  there are many numeric data types—unsigned integer, 
signed integer, double, extended, complex, etc.—and you can 
change the type of a numeric control, connector, or 
indicator by right-clicking the control etc. >> 
Representation >> [data type].  Non-integer data types are 

color-coded orange  (e.g. ) while integer data 
types are color-coded blue. 

    Enum:  is a special data type that allows you to assign values to 
menu selections.  After placing an Enum control, use the 
edit text tool to change the name of the first item in the list.  
Then, right-click >> Add Item After and type a name for 
every additional item you want added to the list.  To wire two 
enum connectors together the items in each list must be 
equivalent. 

   Boolean 

   Character String 



 5

   1D Array:  the array data type represents the number of 
dimensions of the array by the size of the wire. 

   2D Array:  An array is color-coded according to the data type 
that the array consists of (e.g. the data on the left are double 
while the type could also be numeric, , or cluster as 
shown below). 

   3D Array 

   4D Array 

   Cluster:  A cluster is a data type that contains elements of other 
data types.  It is generally used to group related data 
elements together to eliminate clutter on the block diagram.  
You can use the Build Cluster node to input data into a 
graph or chart, since they have only one connector and 
require multiple data, but you don’t have to (see Graphs and 
Charts).  You can think of a cluster as a bundle of wires.  
(LabVIEW User Manual) 

   Cluster of Arrays  (There is a special cluster that represents error 
data.  File input and output nodes have connectors for error in 

and error out.  The wire representing an error cluster is .) 

   File Path 

   Refnum 

   Signal 

Conversions 
If you are trying to connect different data types that are closely related, and LabVIEW 
won’t let you, try using a conversion node (for example if you are trying to convert from 
a character string to a file path).  There are conversion nodes in the numeric, Boolean, 
array, cluster, and string sections of the Functions palette. 

IV. Controls and Indicators 
When the front panel is being displayed you can add controls and indicators using one 
of two methods.  Select them from the Controls palette—if it is open—and click on the 
front panel at the location that you want it, or right-click anywhere on the front panel 
to display the Controls palette.  Another way to create controls or indicators from the 
block diagram is to right-click on a node’s connector that you want wired to the 
control/indicator >> Create Control or Create Indicator.  You can also create 
constants, which are manipulated only from the block diagram. 



 6

NOTE:  the controls and indicators on the front panel are also displayed on the block 
diagram and can be wired to other nodes; however, you can only delete controls and 
indicators from the front panel; if you are working in the front panel and would like to 
display the location of a control or indicator on the block diagram—or vice versa—
either right-click the control or indicator >> Find Control or Find Indicator or 
double-click the control or indicator. 

Controls 
Controls allow the user to input information that the VI needs to do a calculation or 
complete a task.  They usually need to be changed by the user before the program runs or 
updated on each cycle of a loop.  There are five basic types of controls that you will use:  
numeric, Boolean, string and path, list, and ring controls.  List and ring controls 
differ on re used for similar tasks. 

 
Figure 4.  Basic Controls 

On the block diagram a control is indicated by a rectangl
the inside, color-coded according to data type, and a solid l
rectangle (e.g.  represents a control of the type doubl
changed using the operator tool.  To change the default va
control, right-click >> Make Current Value Default. 

NOTE:  not all the nodes in the Controls palette are contr
indicators.  If you aren’t sure, place the control on the fro
diagram to evaluate if a node is a control or an indicator
the Data Types section.  However, indicators can general
the same design by simply right-clicking the node after it 
the front panel or block diagram—and selecting Change

s 

 s 

s 
Boolean Control
String and Path Controls
ly in format and a
Numeric Controls
List Control
Ring Control
e with the data type written on 
ine around the outside of the 
e).  The value of a control is 
lue of a control on the 

ols by default:  some are 
nt panel and look at the block 
, based on the symbols given in 
ly be changed to controls with 
has been created—from either 
 to Indicator or vice versa. 



 7

 

s 
 

s 

Figure 5.  Numeric Controls Pale

Numeric Controls 

Use numeric controls when a calculation needs to be perfor
required.  Numeric controls are accessed from Controls >>
Name].  The data type of a numeric control is numeric. 

Boolean Controls 

A Boolean control is a switch; it is either on or off, 1 or 0.  T
controls is generally in the form of push buttons or switch.  
structures, event structures, connected to a while loop’s co
Boolean controls are accessed from Controls >> Boolean >
data type of a Boolean control is Boolean. 

Array Controls 

Array controls are just like numeric controls only in an arr

Graphs and Charts 
Graphs and charts are accessed from Controls >> Graph >
They are used to display a plot of data.  “Graphs and charts d
and update data. VIs with graphs usually collect the data in a
to the graph, which is similar to a spreadsheet that first store
plot of it. In contrast, a chart appends new data points to thos
a chart, you can see the current reading or measurement in co
acquired.”  (LabVIEW User Manual) 
Indicator

Controls
Indicator
tte 

med or a decimal number is 
 Numeric >> [Control 

he design of the Boolean 
Use these with case 
nditional terminal, etc. 
> [Control Name].  The 

ay format. 

> [Graph or Chart Name].  
iffer in the way they display 
n array and then plot the data 
s the data then generates a 
e already in the display. On 
ntext with data previously 



 8

 
Figure 6.  A Chart Displaying a Random Signal and a Digital Readout 

If you feed a graph a 1D array, the graph will display the data with the values on the x-
axis representing the index of the data element, beginning with zero.  That is, if the 
graph shows a point at (2,5), this means that the third number in the array is a five.  The 
same goes for charts. 

If you feed a graph a 2D array, the graph will display multiple plots using the same 
scheme as for a 1D array—i.e. the values on the x-axis will increment by one for each 
element in the array. 

You can also feed the graph cluster data using a Bundle node (Figure 7).  Cluster the 
initial x-value you want your graph to start with, the amount you want to increment x for 
each point, and an array of y-values.  This specific bundle (of x0, ∆x, y array) is 
classified as WDT (waveform data type).  The AI Acquire Waveform node, and other 
nodes like it, outputs this type of data, so you can wire it directly to a chart. 

 
Figure 7.  WDT Bundle 

V.  Mathematics 
There are multiple ways of doing mathematic operations in LabVIEW depending on your 
design intent.  If you only need to do a few simple mathematical operations (add, 
multiply, increment, etc.) use the operator nodes; you need to do some complex math or 
a lot of operations at a time use either the formula node or the Matlab node (if you need 
the functionality of Matlab). 

Operator Nodes 

 
Figure 8.  An Example of a Mathematical Operation Using Operator Nodes 



 9

Figure 8 shows the operation (x+2)*(x2+1) using operator nodes, two numeric 
controls—x and x2—and a constant—equal to 2.00.  A numeric indicator displays the 
result on the front panel.  When the block diagram is being displayed you can place 
operator nodes using one of two methods.  Select them from the Functions Palette—if 
it is open—and click on the front panel at the location that you want it, or right-click 
anywhere on the front panel to display the Functions palette. 

Arrays 
You can use a for loop to build an array—see the section on for loops—or you can 
initialize an array with Functions >> Array >> Initialize Array.  The Initialize Array 
node will initialize an array of the size you tell it (by wiring constants to the right 
connectors) with the value you set in every index.  Use the position/size/select tool to 
make a higher dimension array by dragging the bottom of the node down to reveal more 
connectors.  You can also build an array by feeding many elements or arrays to the 
Build Array node (Functions >> Array >> Build Array).  If you are feeding the Build 
Array node arrays, select whether you want the node to concatenate the arrays or not by 
right-clicking on the node >> Concatenate Inputs.  If you do not choose to concatenate 
inputs, Build Array will add a new dimension to the output array (make sure all input 
arrays have the same dimensions).  For example, if you connect two 2D arrays to a build 
array node, the node will output a 3D array if you do not concatenate inputs, but if you 
select concatenate inputs, the node will output a larger 2D array. 

 

Drag down to Create 
Higher Dimension Array 

Figure 9.  Build Array and Initialize Array Nodes 

Formula Node 

 
Figure 10.  An Example of a Mathematical Operation Using a Formula Node 

Figure 10 shows the operation (x+2)*(x2+1) using a formula node, two numeric 
controls—x and x2—and a constant—equal to 2.00.  A numeric indicator displays the 
result on the front panel.  To add input or output variables to a formula node, right-click 
the border of the node >> Add Input or Add Output.  Then type a name for the variable 
and wire it to the output connector of another node or a constant if the variable is an 
input or an input connector of another node if the variable is an output.  Now enter 
mathematical statements you want the node to execute inside the node using the edit text 
tool—end statements with a semicolon.  The formula can do operations similar to those 
used in C code.   



 10

Matlab Node 
The Matlab node is just like the formula node except that a VI with a Matlab node in it 
requires that Matlab be running in the background (open) in order operate correctly and 
the statements must be written in the format of a Matlab script. 

VI. Programmatic Control 
When you want to control how your program operates or the order of events use the 
following techniques. 

Sequential Control 

Data Transfer 

The first, obvious, form of control over the order of operations in LabVIEW is data 
transfer.  Before any node runs, it waits for data to be passed to all the connectors that 
are wired.  Therefore, any node which has an output connector wired to another node’s 
input connector will complete its operation before the other node can begin.  Any node 
that has no input connectors wired will automatically operate as soon as the VI is started 
(unless the VI contains another form of programmatic control, discussed in the following 
sections). 

Sequence Structure 

Sometimes, however, you need two or more operations to happen sequentially even 
though they are not wired together.  To do this place a sequence structure on the block 
diagram (Functions >> Structures >> Sequence).  After picking the sequence 
structure, drag out an area on the block diagram that the structure will take up.  
Anything on the block diagram within the boundary of the sequence structure will be 
included in the current frame of the sequence.  At this point there is only one frame in 
the sequence.  LabVIEW will run only one frame at a time and move to the next frame 
only after every node on the current frame has ended its operation.  To add another 
frame after this one, right-click on the border of the sequence structure >> Add Frame 
After.  A new, empty frame will be displayed, and all of the nodes on the first frame will 
be hidden.  Also, a heading is added to the structure.  On the outsides of the heading are 
arrows.  Click on them to browse through the frames of the sequence.  In the middle is 
written the current frame number followed by the set of possible frames in the following 
format:  “1[0..1],” where 1 is the current frame and there are two frames, the first called 
‘0’ and the second ‘1.’  In the blank space within the second frame (frame number ‘1’) 
place the nodes that you want to operate after the first frame has completed.  You can 
continue to add more frames and code by right-clicking the border >> Add Frame 
After or Add Frame Before whichever frame is currently displayed. 



 11

l 

Figu
There will be times when
same time—i.e. pass data
creating sequence locals
sequence that are availab
Add Sequence Local.  O
local by wiring a node to
after the frame from whi
sequence local to an inp

Repetition 

For Loop Structure 

To place a for loop selec
loop structure, drag out a
Anything on the block d
the for loop. 

The for loop in LabVIEW
language.  In the top-left
integer data type (repre
iterations as the value wi
terminal that also output
current iteration number—
loop will iterate as long a
Sequence Loca
  
re11.  Frame 0 and Frame 1 of a Sequence 
 you want to use sequence structures and data transfer at the 
 between the frames of a sequence.  This is easily done by 

.  Sequence locals are variables on the boundary of the 
le to all frames.  Place one by right-clicking the boundary >> 
n one of the frames the data will be loaded into the sequence 
 that sequence local and then any of the nodes on the frames 

ch the data is loaded can access that data by wiring from the 
ut connector on the correct node. 

t Functions >> Structures >> For Loop.  After picking the for 
n area on the block diagram that the structure will take up.  
iagram within the boundary of the for loop will be included in 

 operates just like a for loop would in another programming 
 corner is a boxed ‘N.’  It is an input connector that accepts a 
sented by the color blue), and the loop will complete as many 
red to it.  In the lower-left corner is a boxed ‘i.’  It is an output 
s an integer data type.  Use this terminal to keep track of the 

beginning at zero—or to do calculations with its value.  The 
s long as i<N. 

 

Insert LabVIEW 
Code Here 

Figure 12.  For Loop Structure 



 12

While Loop Structure 

To place the while loop select Functions >> Structures >> While Loop.  After picking 
the while loop structure, drag out an area on the block diagram that the structure will 
take up.  Anything on the block diagram within the boundary of the while loop will be 
included in the while loop. 

Like the for loop, the while loop has a terminal in the lower-left corner (a boxed ‘i’) 
which increments with each iteration, beginning at zero.  The while loop, however, does 
not have a boxed ‘N,’ because it operates not a specific number of times, but, instead, 
until the conditional terminal receives a certain Boolean value.  The conditional 
terminal is in the lower right of the while structure, represented by either a boxed 
circular arrow or a boxed stop sign.  If the conditional terminal is a circular arrow, 
then the while loop is set to run until a False, Boolean data type, is passed to the 
terminal.  If the terminal is a stop sign, the loop is set to run only as long as a False is 
passed to the terminal.  Change this setting by right-clicking the terminal >> Stop If 
True or Continue If True.  You must wire this terminal to some control for the VI to 
run.  If you want the loop to run forever simply right-click the terminal >> Create 
Constant, and switch the constant to the correct value with the operate value tool. 

 

 

Figure 13.  While Loop Structure

Tunnels 

If you want a while loop or a for loop to build an array as it cy
number generator from inside the loop to outside the loop.  W
boundary of the loop LabVIEW will create a tunnel.  On the t
Enable Indexing, and the output will become the data type of
random number generator node in Functions >> Numeric.)

 
Figure 14.  For Loop With a Random Number G
Conditional Terminal
 

cles simply wire a 
here the wire crosses the 

unnel right-click >> 
 a 2D array.  (There is a 
 

enerator Node 



 13

Feedback 

If you want feedback in your loop:  that is, you want to use a variable that your loop 
updated on its last cycle, use shift registers.  On the boundary of your loop, right-click 
>> Add Shift Register.  The left shift register will produce the value that was sent to the 
right shift register on the last cycle of the loop.  “If you do not initialize the register, the 
loop uses the value written to the register when the loop last executed or the default value 
for the data type if the loop has never executed.” (LabVIEW help reference)  To initialize 
the register, wire an input from outside the loop to the left register.  NOTE:  if you are 
using nested loops or running a loop more than once during the time the VI is run, the 
shift register will start the new loop with the value that it ended with the last time the 
loop was executed.  Figure 15 shows how to use a while loop with a Build Array node 
to build an array using feedback.  ‘Array’ is a control of the type 1D array, and ‘Array 2’ 
is an indicator of the type 2D array, because the Build Array node is not set to 
concatenate inputs. 

 

Shift Registers 

Figure 15.  Using Feedback in a While Loop 

Conditional Control 

Case Structure 

“[The case structure] has one or more subdiagrams, or cases, exactly one of which 
executes when the structure executes. Whether it executes depends on the value of the 
Boolean, string, or numeric scalar you wire to the external side of the terminal or 
selector.”  (LabVIEW help reference)  The case structure allows conditional control in a 
VI—like an if-then statement.  On the left side of the case structure is a question mark 
terminal.  Wire into this terminal any numeric, Boolean, or string data.  During runtime 
the VI will wait for data to be passed to the case structure, and then compare the data it 
receives to the titles of each case.  NOTE:  There must be a case for each possible value 
that the structure may receive.  To do this, make one of the cases a default case by right-
clicking on the case >> Make This Case the Default…, and in this case simply wire the 
input tunnels to the output tunnels, without modifying the data.  You can add cases in 
the same way that you add frames in a sequence structure (right-click on the case >> 
Add Case After or Add Case Before).  The case structure by default has two cases, 
True and False, and accepts Boolean values (Boolean case structures do not need a 
default case).  Change this by wiring a different data type to the question mark 
terminal.  To change the name of each case, use the edit text tool. 



 14

 
Figure 16.  The Case Structure 

VII. Input/Output 

Files 
The two most common methods of saving data in LabVIEW are in text format and 
spreadsheet format.  You can create a file in LabVIEW using either method and it will be 
accessible to Excel.  To create a spreadsheet file format, you must have data in array 
form.  Use the Write To Spreadsheet File node (Functions >> File I/O >> Write To 
Spreadsheet File) and wire it to array data and a file path.  The Write To Spreadsheet 
File node also allows other functionality, such as appending to a file that already exists, 
saving the data in a certain format that your spreadsheet program requires, etc. 

 
Figure 17.  Using Write To Spreadsheet File 

To create a generic, text-based file is more difficult.  First you have to place the New File 
node on the block diagram (Functions >> File I/O >> Advanced File Functions >> 
New File), or use the Open File node (Functions >> File I/O >> Advanced File 
Functions >> New File) if the file already exists.  Wire this node to a file path 
control/constant.  Next place the Write File node (Functions >> File I/O >> Write 
File) on the block diagram, and wire the refnum output connector from the New File 
node to the refnum input connector on the Write File node.  Also wire in some data (of 
any data type).  Finally close the file using Close File (Functions >> File I/O >> Close 
File), again wiring a refnum from the Write File to Close File.  NOTE:  these 
operations will happen in the correct order because each node must wait until the 
previous node sends it data—in the form of a refnum—if you wired the refnum from 
the Open File node to the Close File node instead of from the Write File to the Close 
File, the file may be closed before it is written (see the section on Data Transfer).  The 
Write To Spreadsheet File node does all of these steps for you. 



 15

 
Figure 18.  Creating a File 

ata Acquisition 
To acquire data from the breakout boards use the Analog Input and Output nodes 
found in Functions >> Data Acquisition >> Analog Input or Analog Output.  You 
will need to wire them the device number, usually 1, and the channel number, usually 
0, using constants or controls (see the section on Controls and Indicators).  The 
Analog Input nodes will output the voltage it read from the specified input channel at 
the time it ran, and the Analog Output nodes will output a voltage to some specified 
output channel (reference the National Instruments breakout board reference card to 
find which channels are input and which are output and where they are on the board).  
You can also use the Acquire Waveform node and average the array it outputs with the 
Mean node. 

 
Constants
 
Figure 19.  Using The Acquire Waveform Node 


	LabVIEW Help
	Interface
	Front Panel
	Block Diagram
	Palettes
	Tools and Shortcuts
	
	Connect Wire – This tool is only used on the bloc



	Data Types
	Conversions

	Controls and Indicators
	Controls
	Numeric Controls
	Boolean Controls
	Array Controls

	Graphs and Charts

	Mathematics
	Operator Nodes
	Arrays
	
	
	Figure 9.  Build Array and Initialize Array Nodes



	Formula Node
	Matlab Node

	Programmatic Control
	Sequential Control
	Data Transfer
	Sequence Structure
	
	Figure11.  Frame 0 and Frame 1 of a Sequence



	Repetition
	For Loop Structure
	While Loop Structure
	Tunnels
	Feedback

	Conditional Control
	Case Structure


	Input/Output
	Files
	ata Acquisition


