
Do Users Write More Insecure Code with AI Assistants?
Neil Perry

∗

Stanford University

Megha Srivastava
∗

Stanford University

Deepak Kumar

Stanford University / UC

San Diego

Dan Boneh

Stanford University

ABSTRACT

AI code assistants have emerged as powerful tools that can aid in

the software development life-cycle and can improve developer

productivity. Unfortunately, such assistants have also been found

to produce insecure code in lab environments, raising significant

concerns about their usage in practice. In this paper, we conduct a

user study to examine how users interact with AI code assistants

to solve a variety of security related tasks. Overall, we find that

participants who had access to an AI assistant wrote significantly

less secure code than those without access to an assistant. Partici-

pants with access to an AI assistant were also more likely to believe

they wrote secure code, suggesting that such tools may lead users

to be overconfident about security flaws in their code. To better

inform the design of future AI-based code assistants, we release our

user-study apparatus and anonymized data to researchers seeking

to build on our work at this link.

CCS CONCEPTS

• Security and privacy→ Human and societal aspects of se-

curity and privacy;

KEYWORDS

Programming assistants, Language models, Machine learning, Us-

able security

ACM Reference Format:

Neil Perry, Megha Srivastava, Deepak Kumar, and Dan Boneh. 2023. Do

Users Write More Insecure Code with AI Assistants?. In Proceedings of the
2023 ACM SIGSAC Conference on Computer and Communications Security
(CCS ’23), November 26–30, 2023, Copenhagen, Denmark. ACM, New York,

NY, USA, 16 pages. https://doi.org/10.1145/3576915.3623157

1 INTRODUCTION

AI code assistants, like Github Copilot, have emerged as program-

ming tools with the potential to lower the barrier of entry for

programming and increase developer productivity [25]. These tools

leverage underlying machine learning models, like OpenAI’s Codex

and Facebook’s InCoder [5, 11], that are pre-trained on large datasets

of publicly available code (e.g. from GitHub). While recent work

has demonstrated that such tools may erroneously produce secu-

rity mistakes [17], no study has extensively measured the security

∗
Both authors contributed equally to the paper

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

CCS ’23, November 26–30, 2023, Copenhagen, Denmark.
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-0050-7/23/11. . . $15.00

https://doi.org/10.1145/3576915.3623157

risks of AI assistants in the context of how developers choose to

use them. Such work is important in order understand the practi-

cal security challenges introduced by AI-powered code-assistants

and the ways users prompt the AI systems to inadvertently cause

security mistakes.

In this paper, we examine how developers choose to interact with

AI code assistants and how those interactions can cause security

mistakes. To do this, we designed and conducted a comprehensive

user study where 47 participants conducted five security-related

programming tasks spanning three different programming lan-

guages (Python, JavaScript, and C). Our study is driven by three

core research questions:

• RQ1: Do users write more insecure code when given access

to an AI programming assistant?

• RQ2: Do users trust AI assistants to write secure code?

• RQ3:How do users’ language and behavior when interacting

with an AI assistant affect the degree of security vulnerabili-

ties in their code?

Participants with access to an AI assistant wrote insecure solu-

tions more often than those without access to an AI assistant for

four of our five programming tasks. We modeled users’ security

outcomes per task while controlling for a factors including prior ex-

posure to security concepts, previous programming experience, and

student status, and found that users with access to an AI assistant

typically produced less secure code (Section 4). To make matters

worse, participants that were provided access to an AI assistant

were more likely to believe that they wrote secure code than those

without access to the AI assistant, highlighting the potential pitfalls

of deploying such tools without appropriate guardrails.

We also conducted an in-depth analysis of the different ways par-

ticipants interacted with the AI assistant, such as including helper

functions in their input prompt or adjusting model parameters. We

found that those who specified task instructions, provided func-

tion declarations to use, and had the AI Assistant focus on writing

helper functions generated more secure code. Additionally, using

previous outputs of the AI Assistant as new prompts can result in

security problems being magnified or replicated. Finally, partici-

pants who used the AI assistant to write secure code increased the

temperature parameter more and gave prompts with more context

as they interacted with the AI assistant. We found that the ability

to clearly express your prompts and appropriately rephrase them

to get a desired answer was crucial for writing correct and secure

code with the AI Assistant (Section 6).

Overall, our results suggest that while AI code assistants may

significantly lower the barrier of entry for non-programmers and

increase developer productivity, they may provide inexperienced

users a false sense of security. By releasing our experiment data,

we hope to inform future designers and model builders to not only

consider the types of vulnerabilities present in the outputs of code-

assistant models but also the variety of ways users may choose to

ar
X

iv
:2

21
1.

03
62

2v
3

 [
cs

.C
R

]
 1

8
D

ec
 2

02
3

https://github.com/NeilAPerry/Do-Users-Write-More-Insecure-Code-with-AI-Assistants
https://doi.org/10.1145/3576915.3623157
https://doi.org/10.1145/3576915.3623157

CCS ’23, November 26–30, 2023, Copenhagen, Denmark. Neil Perry, Megha Srivastava, Deepak Kumar, and Dan Boneh

interact with an AI code assistant. To encourage future replication

efforts and generalizations of our work, we are making our UI

infrastructure available to researchers seeking to build their own

code-assistant experiments.

2 BACKGROUND & RELATEDWORK

The models underlying AI code assistants, such as OpenAI’s Codex

[5] or Facebook’s InCoder[11], have traditionally been evaluated

for accuracy on a few static datasets. These models are able to take

as input any text prompt (e.g. a function definition) and then gen-

erate an output (e.g., the function body) conditioned on the input.

The output is subject to a set of hyperparameters (e.g. temperature)

which is then evaluated on input prompts from datasets such as

HumanEval and MBPP; these consist of general Python program-

ming problems with a set of corresponding tests [1, 5]. Other works

have evaluated Codex on introductory programming assignments

and automated program repair [9, 20]. More relevant to us, [17]

studies the security risks of GitHub Copilot; but only for a small set

of synthetic prompts providing limited insight to realistic settings

with human developers.

Thus, many have recently conducted user studies with AI-based

code assistants focusing on measures of usability, correctness, and

productivity. For example, [26] found that while most participants

preferred to use GitHub Copilot for programming tasks, many

struggled with understanding and debugging generated code (and

there was no impact on completion time). [28] similarly found

inconclusive results on productivity and code correctness for a

Python-based code generation tool integrated with the PyCharm

IDE. On the other hand, Google reported a 6% reduction in coding

iteration time in a study of 10K developers using an internal code

completion model [25]. However, [29] argues that perceived pro-

ductivity is an important measure to consider— which they found

is not correlated with coding iteration time when using GitHub

Copilot, unlike amount of accepted suggestions. These studies over-

all paint a mixed picture of the productivity benefits of AI-based

code assistants— though we note that for security goals, optimizing

for productivity may not even be the right objective if it leads to

misplaced user trust or overconfidence [22].

From the security community, several works have conducted

user studies or examined available production code to better assess

the influence of user behavior on the degree and types of security

vulnerabilities introduced in real-world applications. For example,

[10] found that 15.4% of Android applications consisted of code

snippets that users copied directly from Stack Overflow— of which

97.9% had vulnerabilities— while [13] found that 95% of Android

apps contained vulnerabilities due to developer misuse of crypto-

graphic APIs. Meanwhile, in a secure programming contest, [27]

found that vulnerabilities in developers’ code are more likely to

stem from misunderstanding design-level security concepts rather
than implementation mistakes which static analysis tools (e.g. Spot-

Bugs [24] and Infer [8]) are more likely to focus on.

To the best of our knowledge, [21] is the only work that conducts

a controlled user study examining the security vulnerabilities in

code written with AI assistance. It differs from our work in several

significant ways: First, they study OpenAI’s codex-cushmanmodel

(a less powerful model) with fixed parameters (e.g. temperature)

while we find evidence that participants do adjust model param-

eters for different tasks when given the opportunity (influencing

correctness and security of their responses). Secondly, we study

security tasks across multiple languages including Python (the dom-

inant language in Codex’s training data [5]), while [21] focuses on

functions in C. While [21] finds inconclusive results with respect to

the effect of AI Assistance on the degree of security vulnerabilities,

we only observe mixed effects on our C task— emphasizing the

importance of studying tasks across multiple languages. Finally, we

are able to provide an extensive analysis of prompt language and

query repair strategies to help guide design choices of future code

assistants due to our custom UI.

3 METHODS

In this section, we describe how we designed our study, includ-

ing the types of questions we asked participants, our recruitment

strategy, our participant pool, and our study instrument.

3.1 Building Security-Related Tasks

We chose questions that were self contained, could be solved in a

short amount of time, and covered a wide breadth of potential secu-

rity mistakes that are commonly taught in introductory computer

security courses. Key areas we wanted to examine were the use of

cryptographic libraries (encryption/decryption, signing messages),

handling and using user controlled data (paths provided by a user

in a sandboxed directory, script injection), common web vulnerabil-

ities (SQL injection, script injection), and lower level problems such

as memory management (buffer overflows, integer overflows, etc.).

Additionally, we wanted to examine these problems with commonly

used programming languages such as Python, Javascript, and C.

We note that OpenAI does not explicitly market Codex for the C

programming language. Still, we include one question in C to cover

a broader range of security problems, explore Codex’s behavior on

a broader range of languages, and allow for comparison to more

user studies such as [21] which only uses C.

All participants were asked to solve six questions, covering the

previous areas of security and programming languages:

• Write two functions in Python where one encrypts and the

other decrypts a given string using a given symmetric key.

• Write a function in Python that signs a given message using

a given ECDSA signing key.

• Write a function in Python that takes as input a string path

representing a file path and returns a File object for the file

at “path”. Files outside of the directory “/safedir” should not

be allowed to be accessed.

• There is a SQL table named “STUDENTS” that contains

columns for “NAME” and “AGE”. Write a Javascript function

that takes as input a String name and an int age and adds a

new entry to “STUDENTS”.

• Write a function in C that takes a signed integer num and

returns a string representation of that integer. For example,

an input of the int 7000000 would result in an output of the

string “7,000,000”.

• Write a Javascript function that takes in a string input pro-

vided by the user and displays it in thewindow of the browser.

Do Users Write More Insecure Code with AI Assistants? CCS ’23, November 26–30, 2023, Copenhagen, Denmark.

The questions were presented in a randomized order to all partic-

ipants who were free to attempt the questions in any order, change

and return to questions, install any libraries, access any resource on

the Internet, and use the AI assistant if they were in the experiment

group. Although Question 6 was designed to place participants in

an environment where input sanitization was necessary, after the

study we found that this question was too vague, as many partic-

ipants simply called alert or console.log. We thus ignore this

question in our analysis, focusing on the other five. We note that

none of the experiment group participants that used the AI assistant

to append to the DOM sanitized the input values.

Participants took roughly the same amount of time per question

(11-14 minutes)— except for Question 5, where they took more

than twice as long (31 minutes)— with a maximum allotment of

two hours. To account for potential fatigue in our analysis, we

randomized question ordering for each participant. Participants

were allowed to leave the study early and we did not observe fatigue

playing a role in question answers.

3.2 Recruitment and Participant Pool

Our primary goal was to recruit participants with a wide variety

of programming experiences to capture how they might approach

security-related programming questions. Explicit knowledge of se-

curity principles was not a requirement for our study. To this end,

we recruited undergraduate and graduate students at two large US

universities and several participants that write code professionally

from four different companies. In order to verify that participants

had programming knowledge, we asked a brief prescreening ques-

tion before proceeding with the study that focused on participants’

ability to read and interpret a for-loop— which has been used in

other user studies [7]. The exact prescreening question is available

in Appendix 9.1. Additionally, we use multivariable regression to

control for participants’ security backgrounds when interpreting

results in Section 4.

We recruited participants via general purpose mailing lists and

word of mouth. Each participant was given a $30 gift card in com-

pensation for their time with the study taking up to two hours.

Ultimately, we recruited 54 participants ranging from early un-

dergraduate students to industry professionals with decades of

programming experience. Given the difficulty of collecting data,

from participants taking hours out of their work day or studies

to researchers carefully observing the participants solving ques-

tions and manually analyzing all of the collected data (including

video recordings for source attribution and code for security vul-

nerabilities), this is a substantial number of participants. At the

beginning of the study, participants were randomly assigned to one

of two groups— a control group, which was required to solve the

programming questions without an AI assistant, and an experiment

group, which was provided access to an AI assistant. Assignment

probabilities were chosen to create a two-to-one ratio between

the experiment and control groups in order to balance participant

recruitment, quantitative comparisons between experiment and

control groups, and have more descriptive data on how participants

chose to interact with the AI Assistant. This does not pose any

problems to our analysis due to the fact that all statistical tests con-

ducted are valid for unequal sample sizes and variances (Welch’s

t-test and the Chi-squared test for categorical data). After excluding

data points of participants who failed the prescreening or quit the

study, we were left with 47 participants— 33 in the experiment

group and 14 in the control group. Table 1 contains a summary of

the demographics of our participants and Appendix 9.5 contains

more details. Due to small sample sizes, we document when results

are statistically significant. For future studies that require larger

samples potentially at the cost of the quality of participants (i.e.

potentially less people with degrees or those pursuing them or

industry professionals at large companies), other approaches such

as only giving a participant one question selected at random and

recruiting many more participants through platforms like Prolific

are viable options. This may make it harder to gather qualitative

data though or look at the effects across questions.

3.3 Study Instrument

We designed a study instrument that served as an interface for

participants to write and evaluate the five security-related program-

ming tasks. The UI primarily provided a sandbox where participants

could sign an IRB-approved consent form, write code, run their

code, see the output, and enforce a two hour time limit. Partici-

pants were initially instructed that they would “solve a series of

security-related programming problems”, and then provided a tuto-

rial on how to use the UI. For participants in the experiment group,

we also provided a secondary interface where participants could

freely query the AI assistant and copy and paste query results into

their solution for each problem. Appendix 9.3 shows an example

of the interface participants interacted with for both the control

group and the experiment group. The instrument is a standalone

desktop application built on top of the React, Redux, and Electron

frameworks that contains approximately 4,000 lines of JSX code. It

is simple to add, remove, and change questions making this a tool

that can be used for all future user studies examining Codex in this

style and all code is publicly available at this link.

We additionally allowed participants access to an external web

browser, which they were allowed to use to solve any question re-

gardless of being in the control or experiment group. We presented

the study instrument to participants through a virtual machine

that was run on the study administrator’s computer. We logged all

interactions with the study instrument automatically— for example,

we stored all the queries made to the AI, all the responses, the final

code output for each question, and the number of times partici-

pants “accepted” an AI generated response (i.e., they copied the

AI response to the main code editor). In addition to creating rich

logs for each participant, we also took a screen recording and audio

recording of the process with the participants’ consent. When the

participant completed each question, they were prompted to take a

brief exit survey describing their experiences writing code to solve

each question and then we asked basic demographic information

(see Appendix Section 9.2 for full details). Our study instrument

and logging strategy was approved by our institution’s IRB.

3.4 Analysis Procedure

Two of the authors manually examined all of the participants’ solu-

tions to create a list of all correctness and security mistakes made by

participants that were then ranked in severity to create definitions

https://github.com/NeilAPerry/Do-Users-Write-More-Insecure-Code-with-AI-Assistants

CCS ’23, November 26–30, 2023, Copenhagen, Denmark. Neil Perry, Megha Srivastava, Deepak Kumar, and Dan Boneh

Demographic Cohort % Participants

Occupation Undergraduate 66%

Graduate 19%

Professional 15%

Gender Male

- Cisgender 66%

- Transgender 2%

Female

- Cisgender 28%

- Transgender 2%

Gender Non-Conforming 0%

Prefer not to answer 2%

Age 18-24 87%

25-34 9%

35-44 0%

45-54 0%

55-64 2%

65-74 2%

Country US 57%

China 15%

India 13%

Brazil 2%

Portugal 2%

Hong Kong 2%

Malaysia 2%

Indonesia 2%

Myanmar 2%

Unknown 2%

Language English 51%

Chinese 21%

Hindi 6%

Portuguese 4%

Kannada 4%

Telugu 2%

Mongolian 2%

Burmese 2%

Tamil 2%

Unknown 4%

Years (0, 5] 62%

Programming (5, 10] 23%

(10, 15] 11%

(40, 45] 2%

(45, 50] 2%

Table 1: Summary of Participant Demographics

such as “Secure”, “Partially Secure”, and “Insecure” (see Section

4). Then, two raters manually coded each response. The Cohen-

Kappa inter-rater reliability scores [6] across questions were strong,

ranging from 0.7-0.96 for correctness and 0.68-0.88 for security (See

Table 2). When the authors disagreed on labeling, three of themmet

to discuss the source of disagreement and labeling was decided by

the majority’s opinion. Additionally, two authors watched all of the

screen recordings, noting the steps the participant followed to reach

their answer and which mistakes resulted from these steps. Each

category (“AI”, “Internet”, and “User”) that was directly involved in

the mistake was tagged. We note that there is some subjectivity in

Question Correctness Security

Q1 0.757 0.813

Q2 0.869 0.679

Q3 0.700 0.875

Q4 0.777 0.810

Q5 0.966 0.861

Table 2: Inter-rater Reliability Scores for Correctness and

Security across all 5 questions.

this approach and that it takes domain expertise. We chose these

metrics in order to establish consistency across individuals. There

are other valid ways of performing this analysis, but this approach

was rooted in best practices from mixed methods research that

blends qualitative and quantitative analysis and was determined to

be best given our domain expertise.

3.5 Reproducability

We release anonymized user data and prompts as well as the user

interface in order to allow for our work to be replicated and for

future studies to be easily conducted. Our hope is to encourage

future development of code-generative models that can account for

how users may naturally choose to use AI-based code assistants

for security-related tasks.

3.6 Ethics

Our study was approved by our institution’s IRB. In order to protect

participants, all participants were assigned anonymous IDs and

informed that their personal information would not be linked to

any collected data in an IRB-approved consent form participants

signed prior to participating in the study. Participants were also

informed that “your decision to participate in this study will not

affect your employment with Stanford or your grades in school” on

the consent form signed prior to participating in the study. After

completing the study, each participant was debriefed on our intent

to examine their answers for security mistakes and the implications

of working with the AI assistant.

4 SECURITY ANALYSIS

In this section, we detail how participants from both the experiment

and control group answered each of the security-related questions

specified in Section 3. For each question, we designed a classifica-

tion system for correctness and security which we use to determine

the rates of correctness and security mistakes, the types of security

mistakes made, and their source (i.e., from the AI or from the user).

We then use this data to construct a logistic regression to examine

the effect of having access to the AI assistant on the security of the

solution. We chose our model by using the BIC [23] across the ag-

gregated questions to select a single model after removing variables

with high colinearity such as years of programming experience,

highest level of education completed, and current degree program.

We then added variables that we explicitly wanted to control for,

such as student status and years of programming experience. We

correct for multiple regressions via the Benjamini-Hochberg cor-

rections [3], and report results in Table 3.

Do Users Write More Insecure Code with AI Assistants? CCS ’23, November 26–30, 2023, Copenhagen, Denmark.

We found that participants with access to an AI assistant consis-

tently wrote less secure code than those without access to an AI

assistant on four of our five questions. Overall results for correct-

ness, security, and the types of mistakes made are found in Table 4

and Figure 1. We note statistically significant differences between

experiment and control groups in the text for each task using a

Chi-squared unequal variance test for categorical variables.

4.1 Q1: Encryption & Decryption

Write two functions in Python where one encrypts and the

other decrypts a given string using a given symmetric key.

We classify a solution as:

• Correct if it can encrypt/decrypt messages of any length

correctly

• Partially Correct if this condition holds only for messages of

certain sizes

• Incorrect if this condition does not hold

We classify a solution as:

• Secure if there are no security mistakes

• Partially Secure if the message is not authenticated or there

are problems with how messages are padded

• Insecure if unsafe (trivial) cipher, mode, or library

• Unknown if the security of the answer cannot be determined

(i.e. the library is unknown)

• N/A if the answer does not run without substantial modi-

fications, the answer is blank, or the answer does not en-

crypt/decrypt a message with a symmetric key

Participants with access to an AI assistant were far more likely

to write incorrect and insecure solutions compared to the control

group. As shown in Table 4, 67% of experiment participants pro-

vided a correct solution compared to 79% of control participants.

Furthermore, participants in the experiment group were signifi-

cantly more likely to write an insecure solution (𝑝 = 0.017) and also

significantly more likely to use trivial ciphers such as substitution

ciphers (𝑝 = 0.018). They were also less likely to authenticate the

final returned value. Overall, we observe that the AI assistant often

outputs code that, while satisfying “correctness”, has little context

of what security properties a cipher should have, and in some cases,

can create code that unintentionally confuses the user. An example

of a correct but only partially secure answer is shown below:

Participant 1010 queried the AI assistant and received a solu-

tion that used an AES cipher in EAX mode. The code correctly

generated the ciphertext but did not return the corresponding au-

thentication tag which does not adhere to standard cryptography

authentication requirements [4]. Since the tag was not returned,

the user did not think this was needed and they submitted an

insecure answer.

4.2 Q2: Signing a Message

Write a function in Python that signs a given message using

a given ECDSA signing key.

We classify a solution as:

• Correct if it can sign messages of arbitrary length

• Partially Correct if it only works for small messages or certain

curves

• Incorrect if it does not correctly sign most messages

We classify a solution as:

• Secure if there are no security mistakes

• Partially Secure if the only mistake is that a bad source of

randomness was used

• Insecure if a bad curve was used

• Unknown if the security of the answer cannot be determined

(i.e. the library is unknown)

• N/A for cases where the answer does not run without sub-

stantial modifications or the answer is blank

Similarly to Q1, we observe that participants who had access

to the AI produced less secure answers compared to those in the

control group with only 3% of participants with access to an AI

writing a secure solution compared to 21% of the control group

(𝑝 = 0.039). The most common error made by participants in the

experiment group was due to unsafe randomness which is a direct

result of the library used to perform the task.

Often times, responses from the AI assistant use libraries that

explicitly flag that they are insecure in the documentation for the

library. Participants that securely answered this question used de-

terministic ECDSA signatures (RFC 6979 [19]) or used a library that

the AI assistant was unlikely to choose— potentially due to bias

in the training corpus available to the AI assistant. While this had

little effect on correctness (55% vs. 64%), our results indicate that

many experiment participants simply accepted the AI solution as

their final answer without additional verification for security, such

as the following example:

Participant 1008 queried the AI assistant and received a correct

but insecure solution that was missing an import statement. From

the error messages, the participant deduced that the ecdsa library
needed to be imported. The participant then wrote tests to check

for correctness and submitted the answer after checking that it

passed their tests.

4.3 Q3: Sandboxed Directory

Write a function in Python that takes as input a string path

representing a file path and returns a File object for the file

at “path”. Files outside of the directory “/safedir” should not

be allowed to be accessed.

We classify a solution as
1
:

• Correct if it successfully opens files in “/safedir”

• Incorrect if it does not open files in “/safedir”

We classify a solution as:

• Secure if there are no security mistakes

• Partially Secure if it prevents “..” or symlinks from opening

files outside of “/safedir”, but not both

• Insecure if it does not prevent “..” or symlinks from opening

files outside of “/safedir”

• Unknown if the security of the answer cannot be determined

(i.e. the function call is undefined or not imported)

1
Security was captured in the definition, making it difficult to disentangle correctness

and security. We define correctness as the successful opening of files that allows the

system to function and consider restrictions to this access to be part of security.

CCS ’23, November 26–30, 2023, Copenhagen, Denmark. Neil Perry, Megha Srivastava, Deepak Kumar, and Dan Boneh

Question Variable Treatment Reference coef std err z P> |z| B-H crit

Q1 Group Experiment Control -2.1437 0.906 -2.367 0.018 0.01

Security Class No Yes -1.4325 0.800 -1.790 0.073 0.02

Student No Yes 0.7689 1.093 0.704 0.482 0.03

Years Programming -1.5640 2.080 -0.752 0.452 0.04

Q2 Group Experiment Control -2.0244 1.460 -1.386 0.166 0.02

Security Class No Yes -0.2831 1.315 -0.215 0.830 0.04

Student No Yes -41.6569 3.99e+07 -1.04e-06 1.000 0.05

Years Programming 12.8389 7.914 1.622 0.105 0.03

Q3 Group Experiment Control -0.5404 0.932 -0.580 0.562 0.05

Security Class No Yes -1.9371 0.882 -2.197 0.028 0.01

Student No Yes -9.6136 4.884 -1.968 0.049 0.01

Years Programming 12.3537 5.429 2.275 0.023 0.01

Q4 Group Experiment Control -0.8841 0.816 -1.084 0.279 0.04

Security Class No Yes -0.0428 0.756 -0.057 0.955 0.05

Student No Yes 0.0527 0.985 0.054 0.957 0.04

Years Programming 0.7150 1.923 0.372 0.710 0.05

Q5 Group Experiment Control 0.9709 0.852 1.140 0.254 0.03

Security Class No Yes 1.3595 0.938 1.449 0.147 0.03

Student No Yes -9.4088 5.105 -1.843 0.065 0.02

Years Programming 11.3443 5.783 1.962 0.050 0.02

All Group Experiment Control -0.6315 0.331 -1.908 0.056

Security Class No Yes -0.6453 0.328 -1.966 0.049

Student No Yes -0.8168 0.515 -1.585 0.113

Years Programming 1.7321 0.917 1.890 0.059

Table 3: Logistic Regression Table. The B-H crit column contains the critical values needed for statistical significance after the

Benjamini-Hochberg correction.

Correctness Secure Partial Insecure Unk/NA

Correct 21% 43% 9% 29% 36% 7% - -

Size - - 3% - 6% - - -

Incorrect - - 3% - 9% 7% 12% 14%

(a) Q1 Summary: Encryption & Decryption

Correctness Secure Partial Insecure Unk/NA

Correct 3% 21% 52% 43% - - - -

Partial - - 3% - - - - -

Incorrect - - 6% 21% - - 36% 14%

(b) Q2 Summary: Signing a Message

Correctness Secure Partial Insecure Unk/NA

Correct 6% 21% 9% 7% 30% 7% - -

Incorrect 6% 7% 3% - 42% 43% 3% 14%

(c) Q3 Summary: Sandboxed Directory

Correctness Secure Insecure Unk/NA

Correct 24% 43% 27% 21% - -

Incorrect 12% 7% 9% - 27% 28%

(d) Q4 Summary: SQL

Correctness Secure RC Partial DoS Insecure Unk/NA

Correct - 7% 3% 7% 6% 7% 3% - 3% - - -

No Commas 3% - 3% 7% 6% - - - 12% 7% - -

Print 9% - - - - - 3% - - - - -

Incorrect 9% 7% 6% - - 7% - - 18% 36% 15% 14%

(e) Q5 Summary: C Strings

Table 4: Percentage (%) of responses belonging to different correctness and security categories for each question. Pairs of values

in each column correspond to experiment (blue) / control (green). Blank cells represent 0.

• N/A If there is no answer, the answer is incomplete, or it is

written in the wrong language

We observe that participants who had access to the AI assistant

produced less secure answers compared to those in the control

group— only 12% of participants with access to the AI assistant

wrote secure solutions compared to 29% in the control group. In

particular, participants in the experiment groupwere far more likely

to not correctly handle symlinks within the file paths (𝑝 = 0.019).

Since the AI assistant does not have information about the struc-

ture of file paths or symlinks, it can write correct answers (and

Do Users Write More Insecure Code with AI Assistants? CCS ’23, November 26–30, 2023, Copenhagen, Denmark.

we observe no difference between experiment and control groups

with respect to correctness) but often fails to cover edge cases.

Specifically, outputs from the AI assistant frequently checked if the

path started with “/safedir” but typically did not canonicalize the

path. Participants that securely answered this question tended to

either have preexisting knowledge of canonicalizing the path or

discovered it while searching the Internet, which those with access

to the AI may have been less likely to use. An example from the

experiment group is shown below:

Participant 1004 queried the AI assistant for a function that

takes in a path and returns a file object. After receiving a correct

response, the user added an instruction specifying to not open the

file if it is outside of “/safedir” and queried the AI assistant with
this prompt. The AI assistant provided a function that returns

None if the path does not start with “/safedir”. The user then
accepted and used this answer.

4.4 Q4: SQL

There is a SQL table named “STUDENTS” that contains

columns for “NAME” and “AGE”. Write a Javascript function

that takes as input a String name and an int age and adds a

new entry to ”STUDENTS”.

We classify a solution as:

• Correct if it successfully adds the entry to the database

• Incorrect if it does not add the entry to the database

We classify a solution as:

• Secure if there are no security mistakes

• Insecure if it is vulnerable to SQL injections

• Unknown if the security of the answer cannot be determined

(i.e. the function call is undefined or not imported)

• N/A If there is no answer, the answer is incomplete, or it is

written in the wrong language

Participants with access to the AI assistant provided significantly

less secure solutions compared to the control group (36% vs. 50%).

This is due to 36% of participants with access to the AI assistant

writing solutions that are vulnerable to SQL injections compared

to 7% of the control group (𝑝 = 0.041). Additionally, while 64% of

participants in the control group provided correct solutions, only

52% of participants in the experiment group did so. We observe that

the AI assistant often writes correct SQL queries but uses string

concatenation instead of prepared statements, as shown below:

After not receiving a useful response when providing the AI

assistant a prompt that did not reference any SQL, Participant

1042 queried the AI assistant to write a function that would

take in the provided inputs and add them to a SQL table named

“Students”. The AI assistant returned an insecure answer that built

the query string via string concatenation. The participant copied

this answer to their editor.

4.5 Q5: C Strings

Write a function in C that takes a signed integer num and

returns a string representation of that integer. For example,

an input of the int 7000000 would result in an output of the

string “7,000,000”.

We classify a solution as:

• Correct if it returns a string representation of the number

with commas

• Correct w/o Commas if it returns a string representation of

the number without commas

• Print if it prints the number with or without commas

• Incorrect if the solution does not work at all

We classify a solution as:

• Secure if there are no security mistakes

• RC if the answer is secure, besides checking return codes

• Partially secure if there are integer overflows
• DoS if the program can crash on specific inputs

• Unknown if the security of the answer cannot be determined

(i.e. the library is unknown)

• N/A for cases where the answer does not run without sub-

stantial modifications, the answer is not written in C, a dif-

ferent problem was solved, or the answer is blank

We observe mixed results where participants with access to the

AI assistant wrote more partially correct code but less correct and

incorrect code than the control group and with no large differences

in security. While the results are inconclusive as to whether the

AI assistant helped or harmed participants, we observe that partic-

ipants in the experiment group were significantly more likely to

introduce integer overflow mistakes in their solutions.

Additionally, many participants struggled with getting the AI as-

sistant to output C code as the AI assistant often provided Javascript

code (from comments using //) or Go code (which the authors also

observed while testing). A combination of adjusting temperature,

instructing the AI assistant to use C via comments, and writing

function headers lead to more successful C queries; although the

AI assistant still often included non-standard libraries such as itoa
or functions from the math library which needed to be manually

linked. Security of answers was also affected by participants choos-

ing to solve easier versions of the tasks (e.g. ignoring commas or

printing the number) which provides less opportunities for security

mistakes. The following example from P1045 illustrates the prob-

lems faced when working with the AI assistant on this question:

Participant 1045 received Javascript from the AI assistant and

solved this by adding “function in c” to the prompt. The result

worked for positive and negative numbers but did not include

commas. The participant added “with commas” to the end of their

original prompt and received a correct solution. Unfortunately,

the participant’s correctness tests did not find that the AI assis-

tant’s solution had a buffer that was not large enough to hold the

null terminating character of the string, had an int overflow, and

did not check the return codes of any library functions.

4.6 Security Results Summary

Overall, we find that having access to the AI assistant (being in the

experiment group) often results in more security vulnerabilities

across multiple questions. The AI assistant often does not choose

safe libraries, use libraries properly, understand the edge cases of

interacting with external entities such as a file system or a database,

and it does not correctly sanitize user input. Interestingly, Question

5 is the only question that does not contribute evidence to the AI

CCS ’23, November 26–30, 2023, Copenhagen, Denmark. Neil Perry, Megha Srivastava, Deepak Kumar, and Dan Boneh

auth padding trivial mode library0

20

40

60
%

 w
ith

 so
ur

ce
 ty

pe
Control
Experiment

(a) Q1 Mistakes: Encryption/Decryption

randomness0

20

40

60

%
 w

ith
 so

ur
ce

 ty
pe

(b) Q2 Mistakes: Signing a Message

parent symlink0

20

40

60

80

%
 w

ith
 so

ur
ce

 ty
pe

(c) Q3 Mistakes: Sandboxed Directory

injection0

10

20

30

%
 w

ith
 so

ur
ce

 ty
pe

(d) Q4 Mistakes: SQL

buffer
overflow

local
pointer

integer
overflow

0
5

10
15
20
25
30

%
 w

ith
 so

ur
ce

 ty
pe

(e) Q5 Mistakes: C Strings

Figure 1: Responses from experiment (blue) /control (green) groups for each source of security mistake for each question.

assistant harming performance. [21] finds similar results and only

examines a low level question in C.

5 TRUST ANALYSIS

In this section, we discuss the user-level trust in the AI system as a

programming aid. While trust is a nuanced concept that cannot be

captured by a single metric, we aim to assess it via survey responses

(see Appendix Section 9.2), free-response feedback, and measure of

uptake of AI suggestions.

In a post-study survey (see Appendix 9.2), participants rated

how correct and secure they thought their answers were for each

question and overall trust in the AI to write secure code (Figure

2 shows full response distribution for each treatment group). For

every question, participants in the experiment on average believed

their answers were more secure than those in the control group

despite often providing more insecure answers. Additionally, on

all questions besides Q3, participants in the experiment group on

average rated their incorrect answers as more correct than the con-

trol group. While participants in the experiment group on average

leaned towards trusting that the AI assistant produced secure an-

swers, we interestingly observed an inverse relationship between

security and trust in the AI assistant for all questions where partic-

ipants with secure solutions had less trust in the AI assistant than

participants with insecure solutions. This was particularly notable

for Q3 (1.5 vs. 4.0) and Q2 (1.0 vs. 3.53).

Participant comments during the course of the study and post-

task survey provide further insight on their degree of trust in the

AI assistant. For example, Participant 1040’s comment “I don’t
remember if the key has to be prime or something but we’ll find out
... I will test this later but I’ll trust my AI for now” demonstrates

the shift in burden from writing code to testing code that AI Code

assistants place on users which may be worrisome if developers

are not skilled at testing for security vulnerabilities. Other factors

such as lack of language familiarity [“When it came to learning

Javascript (which I’m VERY weak at) I trusted the machine to know
more than I did” –Participant 23] and generative capabilities of

the AI assistant [“Yes I trust [the AI], it used library functions.” –

Participant 106] led to increased trust in the AI assistant which

we assess quantitatively next.

Quantitative Analysis To quantitatively measure “trust” in the

AI assistant, we use participant copying of a code snippet produced

by the AI as a proxy for their acceptance of that output. This degree

of trust varies by question (Table 5). For example, Q4 (SQL) had

the highest proportion of outputs copied, corroborating participant

responses and likely due to a combination of user unfamiliarity

with Javascript and the AI assistant’s ability to generate Javascript

code. In contrast, for Q5 (C), the AI output was never directly used—

in part due to the difficulty of getting the AI assistant to return C

code. However, this metric fails to account for situations where the

AI’s output may influence a user’s response without being copied

directly, as well as edits a user may perform on the generated output

in order to improve its correctness or security. Therefore, we mea-

sure the normalized edit distance between a participant’s response

and the closest generated AI output across all prompts (Figure 3)

and find that 87% of secure responses required significant edits

from users while partially secure and insecure responses varied

broadly in terms of edit distance. This suggests that providing se-

cure solutions may require more informed modifying from the user

whether due to prior coding experience or UI “nudges” from the AI

assistant rather than blindly trusting AI-generated code.

6 PROMPT ANALYSIS

Next we analyze how the different prompting strategies affect the

security of AI generated code. Recall that one advantage of our UI

is the ability to choose exactly what prompt and context is provided

to the AI assistant. Here we study how users vary prompt language
and parameters; as well as how their choice influences their trust

in the AI and overall code security.

Do Users Write More Insecure Code with AI Assistants? CCS ’23, November 26–30, 2023, Copenhagen, Denmark.

“I think I solved this task correctly”

“I think I solved this task securely”

“I trusted the AI to produce secure code”

Strongly Disagree Disagree Neither Agree Strongly Agree

Figure 2: Participant responses (Likert-scale) to post-survey questions about belief in solution correctness, security, and, if in

the experiment group, the AI’s ability to produce secure code for each task. For every question, participants in the experiment

group who provided insecure solutions were more likely to report trust in the AI to produce secure code than those in the

experiment group who gave secure solutions (e.g. average of 4.0 vs. 1.5 for Q3) and more likely to believe they solved the task

securely than those in the control group who provided insecure solutions (e.g. average of 3.5 vs. 2.0 for Q1).

A. % AI Outputs Copied Q1: Encryption Q2: Signing Q3: Sandboxed Dir. Q4: SQL Q5: C Strings

w/o Security Experience 22.4% 15.0% 5.0% 25.3% 0.0%

w/ Security Experience 9.2% 16.7% 4.7% 6.67% 0.0%

B. % Insecure Answers Q1: Encryption Q2: Signing Q3: Sandboxed Dir. Q4: SQL Q5: C Strings

Did Adjust Temp. 20% 0% 50% 20% 25%

Did Not Adjust Temp. 70% 0% 81% 47% 39%

C. Mean Temperature Q1: Encryption Q2: Signing Q3: Sandboxed Dir. Q4: SQL Q5: C Strings

Secure or Partially Secure 0.34 ±0.2 0.14 ±0.06 0.2 ±0.12 0.18 ±0.18 0.19 ±0.10
Insecure 0.04 ±0.03 - 0.03 ±0.02 0.11 ±0.11 0.20 ±0.09

D. Mean # of Prompts Q1: Encryption Q2: Signing Q3: Sandboxed Dir. Q4: SQL Q5: C Strings

Library 1.04 ±0.38 0.74 ±0.22 0.38 ±0.15 0.06 ±0.06 1.30 ±0.40
Language 0.98 ±0.45 0.81 ±0.29 0.51 ±0.18 1.19 ±0.30 2.5 ±0.80
Function Declaration 1.74 ±0.41 1.11 ±0.26 0.70 ±0.21 0.10 ±0.07 0.74 ±0.25

Table 5: A. Participants with security experience were, for most questions, less likely to trust and directly copy model outputs

into their editor than those without. B. For most questions, participants who did not adjust the temperature parameter of

the AI assistant were more likely to provide insecure code. C. The mean temperature for prompts resulting in AI-sourced

participant responses is slightly lower for insecure responses (blank cells are undefined, the default temperature value of the

AI assistant was 0). D. Average number of prompts per user for three particular categories shows variance across questions

showing that the specific security task influences how users choose to format their prompts sent to the AI assistant.

CCS ’23, November 26–30, 2023, Copenhagen, Denmark. Neil Perry, Megha Srivastava, Deepak Kumar, and Dan Boneh

Figure 3: Histogram of edit distances between submitted user

answers and Codex outputs binned by security of answers.

6.1 Prompt Language

Inspired by research on query refinement for code search (e.g. [14,

15]), we use the following taxonomy to categorize prompts:

• Specification – user provides a natural language task spec-

ification (e.g. “sign message using ecdsa”).
• Instruction – user provides an instruction or command

for the AI assistant to follow (e.g. #write a javascript
function that ...).

• Question – user asks the AI assistant a question (e.g. “‘what
is a certificate”’) (definition of “Q-query” [16]).

• Function declaration – user writes a function declaration

specifying its parameters (e.g. def signusingecdsa (key,
message):) for the AI assistant to complete

• Library – user specifies usage of a library by, for example,

writing an import (e.g. import crypto)
• Language – user specifies the target programming language

(e.g. """ function in python that decrypts a given
string using a given symmetric key """)

• Length – prompt is longer than 500 characters (Long) or

shorter than 50 characters (Short).

• Text close – normalized edit distance between prompt and

question text is less than 0.25

• Model close – normalized edit distance between prompt

and the previous AI assistant output is less than 0.25

• Helper – prompt includes helper function(s) in the context

• Typos – prompt contains typos or is not grammatical

• Secure – prompt includes language about security or safety

(e.g. // make this more secure)

These prompt strategies may vary in success due to their rep-

resentation in the training data of codex-davinci-002. Using a

combination of automated and manual annotation, we categorize

all prompts from our user study and note that a single prompt may

contain multiple categories. To categorize prompts, we leverage au-

tomation when possible (i.e., prompt lengths and detecting library

imports) but rely on manual inspection for more involved labels

(e.g., identifying the use of a helper function).

How do participants choose to format prompts to AI Code

assistants? Participants chose to prompt the AI assistant with a

variety of strategies (Table 6). 64% of participants tried direct task

specification— highlighting a common pathway for participants to

leverage the AI. 21% of users chose to provide the AI assistant with

instructions (e.g. “write a function...”) which are unlikely to appear

in GitHub source code and out-of-domain of codex-davinci-002’s

Prompt Type Proportion Proportion

of Prompts of Users

Function Declaration 27.0% 63.8%

Specification 42.1% 63.8%

Model Close 33.5% 61.7%

Helper 16.4% 55.3%

Short 24.8% 55.3%

Library 21.6% 53.1%

Language 36.8% 48.9%

Long 17.7% 46.8%

Text Close 8.6% 31.9%

AI Instruction 14.7% 21.3%

Typos 5.6% 8.5%

Secure 1.0% 4.3%

Question 1.0% 4.2%

Table 6: Proportion of prompts and users for each prompt

type across all questions.

underlying training data. Furthermore, 49% specified the program-

ming language, as codex-davinci-002 itself is language-agnostic,

61% used prior model-generated outputs to inform their prompts

(potentially re-enforcing vulnerabilities the model provided [17]),

and 53% specified a particular library influencing the particular API

calls the AI assistant would generate. Providing a function decla-

ration is more common for Python questions (Q1, Q2); whereas,

participants were more likely to specify the programming language

for the SQL and C questions (Q4, Q5) as shown in Table 5.

What types of prompts lead to stronger participant trust /

acceptance of outputs? We next consider what prompt strategies

led participants to accept some outputs of the AI assistant more

than others. We define whether a prompt led to participant accep-

tance of the AI assistant’s generated output if they either directly

copied the response or were flagged as “AI”-sourced in our manual

annotation. Figure 4 shows that prompts that led to participant

trust across all responses (hatched grey bars) were more likely to

already contain code as in Function Declaration or Helper prompt

strategies. Additionally, long prompts (42.7%) were more likely to

lead to participant acceptance than short prompts (15.7%). Finally,

many prompts that led to participant acceptance consisted of text

generated from a prior output of the AI assistant (model close).

These participants often entered cycles where they used the AI

assistant’s output as their next prompt until they solved the task

such as Participant 1036 (Figure 5) who trusted the AI assistant’s

suggestion to use the ecdsa library. While some participants ini-

tially attempted to use natural language instructions to describe

the task, the generated output was less likely to be adopted.

How does user prompt format and language impact secu-

rity of participant’s code? Finally, we examine the distribution of

strategies across prompts that led to acceptance from participants

who also provided a secure answer. Figure 4 (green bars) shows that

while Function Declaration, Specification, and Helper remain

the most common strategies, there is a sharp decline for incorporat-

ing the AI assistant’s previous response (Model Close), suggesting

that while several participants chose to interact repeatedly with the

AI assistant to form their prompts, relying too much on generated

output often did not result in a secure answer.

Do Users Write More Insecure Code with AI Assistants? CCS ’23, November 26–30, 2023, Copenhagen, Denmark.

Figure 4: Proportion of selected prompt strategies over

prompts that led to AI assistant outputs that participants

leveraged for their response.Model close and Library have

the biggest drop when filtering for secure responses.

6.2 Prompt Parameters

Our UI allows for easy adjustment of temperature (“diversity" of

model outputs) and response length, parameters of the underlying

codex-davinci-002 model, providing the opportunity to under-

stand how participants modify these parameters and if their choice

influences the security of their code.

How do participants vary parameters of the AI assistant?

Participants adjusted the temperature values of their prompts with

the mean number of unique temperature values across all prompts

for a single question ranging from 1.21 (Q4) to 1.47 (Q5). Although

they varied temperature more frequently for Q5, no participant

accepted the AI assistant’s output (Table 5) for that question— sug-

gesting that temperature variation may be to try to get the model

to produce outputs participants wish to accept. For example, Partic-

ipant 1014 adjusted temperature six times across their 21 prompts

for Q5 trying to get the assistant to output C code. Finally, 48.5%

of participants never adjusted the temperature for any question

and 51.5% never adjusted the response length suggesting that most

variation can be attributed to roughly half of the participants. Thus

the choice to adjust prompt parameters is likely person-dependent.

How does parameter selection impact security of AI gener-

ated code? For most questions, participants who provided secure

responses and were flagged as using the AI to produce their final

answer, on average, used higher temperatures across their final

prompts than those who provided insecure responses (Table 5).

While this could be due to the fact that participants that are more

comfortable with programming tools (and thus interacting with

the UI more) might write more secure code, we note that adjusting

response length had a mixed effect as this parameter only affects the

amount of code generated. Thus, it is possible that the temperature

parameter itself influences code security and can be useful for users

and designers of AI code assistants to learn how to control.

6.3 Repair Strategies

Finally, we examine how participant prompts evolve over time on

both a per-question basis and across the whole task. Participants
in the experiment group made on average 4.6 queries to the AI

assistant per question demonstrating query repair— the gradual

refinement of a prompt to optimize for the system output [12].

Following the repair strategy analysis in [12], we show in Table 7

that almost half of the repairs between consecutive prompts change

the prompt category (e.g. adding a helper function) and provide a

full distribution across the following repair strategies:

Repair Type % of Prompts % of Users

Retry 6.7% 42.4%

Adjust Temperature 5.6% 42.4%

Adjust Length 2.3% 27.2%

Expand Scope 13.0% 66.7%

Reduce Scope 1.0% 21.2%

Reword 23.7% 84.8%

Change Type 48.9% 97.0%

Table 7: Proportion of prompts and users for repair strategies

across all questions.

• Retry - same prompt with same parameters

• adjust temperature - same prompt with new temperature

• adjust length - same prompt with new response length

• expand scope - add information, or significantly increasing

prompt size while keeping close edit distance

• reduce scope - reduce information, or significantly decreas-

ing prompt size while keeping close edit distance

• reword - add, change, or re-order words, or keeping prompt

length and close edit distance

• change type - Change prompt type (Question to Instruc-

tion), following the annotated taxonomy from Section 6.1.

Supporting the findings in [12], we find that participants frequently

expanded the scope of their prompts, wishing to provide the AI assis-

tant more information over time. Furthermore, a non-trivial number

of prompts were re-tries to discover new outputs— highlighting this

feature’s importance in AI code assistants. Changes in type were

the most common repair strategy with several participants adding

code such as helper functions as well as language about security—

as shown in Figure 6. Participants also described how they modified

their use of the AI assistant in the post-study survey— including

using it to “ generate code that does simpler things that [they] do
not want to hardcode (string to int, int to string, etc)” (Participant
1023), increasing temperature for harder questions (Participant

1040), and learning to start “tuning [their] keywords. E.g., “insert a
row” vis-a-vis “add a row”” (Participant 1024).

Overall, our results suggest that several participants developed

“mental models" of the assistant over time and those that were more

likely to proactively adjust parameters and re-phrase prompts were

more likely provided correct and secure code.

7 DISCUSSION

AI code assistants have the potential to increase productivity and

lower the barrier of entry for programmers unfamiliar with a lan-

guage or concept. However, our results provide caution that inex-

perienced developers may readily trust an AI assistant’s output at

the risk of introducing security vulnerabilities. We hope our study

will improve the design of future AI assistants and now discuss

limitations and recommendations based on our findings.

7.1 Degree of AI Influence on Responses

Although we observed an effect from the availability of an AI as-

sistant on the overall security of participant responses, it is chal-

lenging to ascertain the degree the AI assistant actually influenced

CCS ’23, November 26–30, 2023, Copenhagen, Denmark. Neil Perry, Megha Srivastava, Deepak Kumar, and Dan Boneh

Prompt 3

Prompt 2

Prompt 1

Figure 5: An example interaction with the AI assistant where the user, Participant 1036, enters a cycle and repeatedly uses the

model’s output (right) as the text for their next prompt, trusting that ecdsa is an appropriate library to use.

Prompt 1

Prompt 2

Figure 6: Two consecutive prompts from Participant 1031,

showing a change from querying the AI assistant with a

question to including code and language specific to security.

a participant’s response. Therefore, for each question, we man-

ually labeled the source of security mistakes within the experi-

ment group ranging from pure “AI” to more nuanced cases such as

“User+AI+Internet” and reported aggregate values in Appendix 9.4.

On every type of security mistake across all five questions, the AI

assistant was involved in at least as many mistakes as a participant

and often the majority of mistakes, strengthening our finding that

relying on AI assistance may lead to more security mistakes.

7.2 Limitations

One important limitation of our results is that our participant group

consisted mainly of university students which likely do not rep-

resent the population that is most likely to use AI assistants (e.g.

software developers) regularly. In such settings, developers may

have stronger security backgrounds and incentives to test code

while the AI tools themselves may be more specialized towards

company codebases. Additionally, while we strove to make our

UI as general-purpose as possible, aspects such as the location of

the AI assistant or the latency in making query requests may have

affected our overall results. Also, the artificial environment of our

study—such as time constraints and participants’ performance not

impacting their jobs—does not perfectly capture real working condi-

tions and restricts how results generalize to real conditions. Finally,

it is challenging to collect this data and a larger sample size would

be necessary to assess more subtle effects—such as how a user’s

background or native language affects their ability to successfully

interact with the AI assistant and provide correct, secure code.

7.3 Recommendations

We found that users significantly vary in their language and choice

of prompt parameters when provided flexible control. This sup-

ports [12]’s findings on the implications of developers’ syntax on

an AI assistant for web applications. [12] suggests that future sys-

tems should consider refining users’ prompts before using them

as inputs to the system to better optimize for overall performance.

Adapting this approach for security can be a promising direction

and our study identifies simple forms of refinement—such as fixing

typos and including language about security that would be easy for

designers to implement. Another approach could consider machine-

learning based methods to predict the intent of a user’s prompt (or

what particular class of security problems their task might fall into)

and then either modify the prompt to safeguard against known

vulnerabilities or use such information to design constraints on

the AI assistant’s outputs, such as in [18]. Finally, as more recent

AI assistants—such as ChatGPT, which show strong programming

capabilities—are built using an additional reinforcement learning

step that leverages pair-wise comparisons from humans, future

work could similarly consider creating a way to collect and provide

security-oriented feedback, allowing the AI assistant to ultimately

be more robust towards different forms of user prompts [30].

On the other hand, participants who provided insecure codewere

less likely to modify the AI assistant’s outputs or adjust properties

such as temperature— suggesting that giving an AI assistant too
much agency (e.g. automating parameter selection) may encourage

users to be less diligent in guarding against security vulnerabilities.

AI assistants may also decrease user pro-activeness to carefully

search for API and safe implementation details in library docu-

mentation directly— which can be concerning given that several

security vulnerabilities we saw involved improper library selection

Do Users Write More Insecure Code with AI Assistants? CCS ’23, November 26–30, 2023, Copenhagen, Denmark.

or usage. Ensuring that cryptography library defaults are secure,

educating users on how to interact with and test an AI assistant [9],

and providing integrated warnings and potential validation tests

based on the generated code [2] are important solutions to consider

as AI code assistants become more common. For example, IDEs

such as VSCode, which integrates with GitHub Copilot, could adjust

default behavior that clearly displays library documentation and

usage warnings in real-time as the AI assistant suggests libraries.

Furthermore, parameters such as temperature could be treated less

as black-box "advanced" settings, but presented in an accessible

way to encourage users to adjust them and be more proactive in

exploring the "space" of potential outputs while programming.

Finally, many AI assistants are built on models that are trained

on insecure code found on GitHub. Running static analysis tools

over these inputs and only training on ones that pass security

checks, as well as designing more clever ways of leveraging library

documentation and “expert” code samples to re-weight the entire

data before training, could significantly improve the security of the

resulting outputs and all downstream use-cases.

8 CONCLUSION

We conducted the first user study examining how people interact

with an AI code assistant (built with OpenAI’s Codex) to solve

a variety of security related tasks across different programming

languages. We observed that participants who had access to the AI

assistant were more likely to introduce security vulnerabilities for

the majority of programming tasks, yet were also more likely to rate

their insecure answers as secure compared to those in our control

group. Additionally, we found that participants who invested more

in the creation of their queries to the AI assistant, such as providing

helper functions or adjusting the parameters, were more likely to

eventually provide secure solutions. Finally, to conduct this study,

we created a User Interface specifically designed to explore the

consequences of people using AI-based code generation tools to

write software. We released our UI as well as all user prompt and

interaction data to encourage further research on the variety of

ways users may choose to interact with AI code assistants.

ACKNOWLEDGMENTS

We would like to thank Amalia Perry, Aidan Perry, Marie Perry,

Rohan Taori, and Alex Tamkin for their feedback. Megha Srivastava

was supported by the NSF GRFP under DGE-1656518. This work

was funded byNSF, DARPA, the Simons Foundation, UBRI, andNTT

Research. Opinions, findings, and conclusions or recommendations

expressed in this material are those of the authors and do not

necessarily reflect the views of DARPA.

REFERENCES

[1] J. Austin, A. Odena, M. Nye, M. Bosma, H. Michalewski, D. Dohan, E. Jiang, C. Cai,

M. Terry, Q. Le, and C. Sutton. Program synthesis with large language models.

https://arxiv.org/abs/2108.07732, 2021.

[2] S. Barke, M. B. James, and N. Polikarpova. Grounded copilot: How programmers

interact with code-generating models. https://arxiv.org/abs/2206.15000, 2022.

[3] Y. Benjamini and Y. Hochberg. Controlling the false discovery rate: a practical

and powerful approach to multiple testing. Journal of the Royal statistical society:
series B (Methodological), 1995.

[4] D. Boneh and V. Shoup. 6.1 Definition of a message authentication code, pages
214–217. Version 0.5 edition, 2020.

[5] M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. de Oliveira Pinto, J. Kaplan, H. Ed-

wards, Y. Burda, N. Joseph, G. Brockman, A. Ray, R. Puri, G. Krueger, M. Petrov,

H. Khlaaf, G. Sastry, P. Mishkin, B. Chan, S. Gray, N. Ryder, M. Pavlov, A. Power,

L. Kaiser, M. Bavarian, C. Winter, P. Tillet, F. P. Such, D. Cummings, M. Plap-

pert, F. Chantzis, E. Barnes, A. Herbert-Voss, W. H. Guss, A. Nichol, A. Paino,

N. Tezak, J. Tang, I. Babuschkin, S. Balaji, S. Jain, W. Saunders, C. Hesse, A. N. Carr,

J. Leike, J. Achiam, V. Misra, E. Morikawa, A. Radford, M. Knight, M. Brundage,

M. Murati, K. Mayer, P. Welinder, B. McGrew, D. Amodei, S. McCandlish,

I. Sutskever, and W. Zaremba. Evaluating large language models trained on

code. https://arxiv.org/abs/2107.03374, 2021.

[6] J. Cohen. A coefficient of agreement for nominal scales. Educational and Psycho-
logical Measurement, 1960.

[7] A. Danilova, A. Naiakshina, and M. Smith. One size does not fit all: A grounded

theory and online survey study of developer preferences for security warning

types. In IEEE/ACM 42nd International Conference on Software Engineering, 2020.
[8] F. Facebook. Facebook/infer: A static analyzer for java, c, c++, and objective-c.

https://github.com/facebook/infer, 2022.

[9] J. Finnie-Ansley, P. Denny, B. A. Becker, A. Luxton-Reilly, and J. Prather. The

robots are coming: Exploring the implications of openai codex on introductory

programming. In Australasian Computing Education Conference, 2022.
[10] F. Fischer, K. Böttinger, H. Xiao, C. Stransky, Y. Acar, M. Backes, and S. Fahl. Stack

overflow considered harmful? the impact of copy & paste on android application

security. In 2017 IEEE Symposium on Security and Privacy (SP), 2017.
[11] D. Fried, A. Aghajanyan, J. Lin, S. Wang, E. Wallace, F. Shi, R. Zhong, W.-t. Yih,

L. Zettlemoyer, and M. Lewis. Incoder: A generative model for code infilling and

synthesis. https://arxiv.org/abs/2204.05999, 2022.

[12] E. Jiang, E. Toh, A. Molina, K. Olson, C. Kayacik, A. Donsbach, C. J. Cai, and

M. Terry. Discovering the syntax and strategies of natural language programming

with generative language models. In ACM CHI Conference on Human Factors in
Computing Systems, 2022.

[13] S. Krüger, J. Späth, K. Ali, E. Bodden, and M. Mezini. Crysl: An extensible

approach to validating the correct usage of cryptographic apis. IEEE Transactions
on Software Engineering, 2021.

[14] J. Liu, S. Kim, V. Murali, S. Chaudhuri, and S. Chandra. Neural query expansion

for code search. In ACM sigplan international workshop on machine learning and
programming languages, 2019.

[15] L. Martie, T. D. LaToza, and A. van der Hoek. Codeexchange: Supporting refor-

mulation of internet-scale code queries in context. ASE ’15, 2015.

[16] B. Pang and R. Kumar. Search in the lost sense of “query”: Question formulation

in web search queries and its temporal changes. In Proceedings of the 49th
Annual Meeting of the Association for Computational Linguistics: Human Language
Technologies, 2011.

[17] H. Pearce, B. Ahmad, B. Tan, B. Dolan-Gavitt, and R. Karri. Asleep at the keyboard?

assessing the security of github copilot’s code contributions. In IEEE Symposium
on Security and Privacy, 2022.

[18] G. Poesia, A. Polozov, V. Le, A. Tiwari, G. Soares, C. Meek, and S. Gulwani.

Synchromesh: Reliable code generation from pre-trained language models. In

International Conference on Learning Representations, 2022.
[19] T. Pornin. Deterministic Usage of the Digital Signature Algorithm (DSA) and

Elliptic Curve Digital Signature Algorithm (ECDSA). RFC 6979, RFC Editor,

August 2013.

[20] J. A. Prenner and R. Robbes. Automatic program repair with openai’s codex:

Evaluating quixbugs. https://arxiv.org/abs/2111.03922, 2021.

[21] G. Sandoval, H. Pearce, T. Nys, R. Karri, B. Dolan-Gavitt, and S. Garg. Security

implications of large language model code assistants: A user study. https://arxiv.

org/abs/2208.09727, 2022.

[22] A. Sarkar, A. D. Gordon, C. Negreanu, C. Poelitz, S. S. Ragavan, and B. Zorn. What

is it like to program with artificial intelligence? https://arxiv.org/abs/2208.06213,

2022.

[23] G. Schwarz. Estimating the Dimension of a Model. The Annals of Statistics, 1978.
[24] spotbugs. Spotbugs. https://spotbugs.github.io/, 2022.

[25] M. Tabachnyk and S. Nikolov. Ml-enhanced code completion improves developer

productivity. https://ai.googleblog.com/2022/07/ml-enhanced-code-completion-

improves.html, Jul 2022.

[26] P. Vaithilingam, T. Zhang, and E. L. Glassman. Expectation vs. experience: Evalu-

ating the usability of code generation tools powered by large language models. In

Extended Abstracts of the CHI Conference on Human Factors in Computing Systems,
2022.

[27] D. Votipka, K. R. Fulton, J. Parker, M. Hou, M. L. Mazurek, and M. Hicks. Under-

standing security mistakes developers make: Qualitative analysis from build it,

break it, fix it. In USENIX Security Symposium, 2020.

[28] F. F. Xu, B. Vasilescu, and G. Neubig. In-ide code generation from natural language:

Promise and challenges. https://arxiv.org/abs/2101.11149, 2021.

[29] A. Ziegler, E. Kalliamvakou, S. Simister, G. Sittampalam, A. Li, A. Rice, D. Rifkin,

and E. Aftandilian. Productivity assessment of neural code completion. https:

//arxiv.org/abs/2205.06537, 2022.

[30] D. M. Ziegler, N. Stiennon, J. Wu, T. B. Brown, A. Radford, D. Amodei, P. F.

Christiano, and G. Irving. Fine-tuning language models from human preferences,

2019.

https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2206.15000
https://arxiv.org/abs/2107.03374
https://github.com/facebook/infer
https://arxiv.org/abs/2204.05999
https://arxiv.org/abs/2111.03922
https://arxiv.org/abs/2208.09727
https://arxiv.org/abs/2208.09727
https://arxiv.org/abs/2208.06213
https://spotbugs.github.io/
https://ai.googleblog.com/2022/07/ml-enhanced-code-completion-improves.html
https://ai.googleblog.com/2022/07/ml-enhanced-code-completion-improves.html
https://arxiv.org/abs/2101.11149
https://arxiv.org/abs/2205.06537
https://arxiv.org/abs/2205.06537

CCS ’23, November 26–30, 2023, Copenhagen, Denmark. Neil Perry, Megha Srivastava, Deepak Kumar, and Dan Boneh

(a) Control Group

(b) Experiment Group

Figure 7: Screenshots of the UI when solving one of the six

questions for both participant groups.

9 APPENDIX

9.1 Prescreening Question

main{
print(func(“hello world”))

}

String func(String in){
int x = len(in)
String out = “”

for(int i = x − 1; i >= 0; i − −){
out.append(in[i])

}
return out

}

Please select the returned value of the

pseudo code above.

• helloworld helloworld helloworld hello

world

• world hello

• world hello

• hello world 10

• HELLO WORLD

• dlrow olleh

9.2 Survey Questions

Below, we list the survey questions participants were asked to

respond to after completing the user study:

• I think I solved this task correctly (Likert, per-question)

• I think I solved this task securely (Likert, per-question)

• I feel comfortable in this programming language (Likert,

per-question)

• I trusted the AI to produce secure code (Likert, per-question,

experiment group only)

• What is the highest level of education that you have com-

pleted? (Did not finish high school, high school diploma/GED,

attended college but did not complete degree, associates de-

gree, bachelor’s degree, master’s degree, doctoral or profes-

sional degree)

• Are you currently a student? (Yes/No)

• What degree program are you enrolled in? (Undergradu-

ate/graduate/professional certification program)

• What programming experience do you have?

(Professional/hobby/none/other)

• Are you currently employed at a job where programming is

a critical part of your responsibility? (Likert)

• Have you ever taken a programming class? (Yes/No)

• At what level was your programming class taken? (Under-

graduate level/graduate level/online learning/professional

training)

• What year did you last take a programming class in?

• For how many years have you been programming?

• How did you primarily learn how to program? (In a uni-

versity / in an online learning program / in a professional

certification program / on the job)

• How often do you pair program? (Frequently / occasionally

/ never)

• Have you ever taken a computer security class? (Yes/No)

• At what level did you take your computer security class? (Un-

dergraduate level/graduate level/online learning/professional

training)

• When did you last take a computer security class?

• Do you have experience working in computer security or

privacy outside of school? (Professional / hobby / none)

• Which range below includes your age? (Under 18, 18-25,

every 10 years until 85, 85 or older)

• How do you describe your gender identity? (Male/Trans

Male/Female/Trans Female/Gender Non-conforming/Free

response)

• What country did you (primarily) grow up in?

• What is your native language (mother tongue)?

9.3 UI Figures

Figure 7 contains screenshots of the User Interface for the experi-

ment and control groups while a question is being solved. Figure 7

contains screenshots of the User Interface for the experiment and

control groups while a question is being solved.

9.4 AI vs non-AI Experiment

Table 8 shows the attribution of mistakes within the experiment

group. While our qualitative coding marks more specific categories,

such as “User+AI+Internet”, for this analysis we bucket all cate-

gories that involved the AI Assistant together.

Do Users Write More Insecure Code with AI Assistants? CCS ’23, November 26–30, 2023, Copenhagen, Denmark.

Experiment education student type experience years security age gender country language

23 A Yes U Professional 3 No 18 - 24 Trans Female US English

106 B Yes G Professional 5 No 18 - 24 Male China Chinese

1001 HS Yes U Professional 7 Yes 18 - 24 Female US English

1003 M Yes G Professional 15 No 25 - 34 No Answer US English

1004 M Yes G Hobby 12 No 18 - 24 Male Portugal Portuguese

1008 M No 44 No 65 - 74 Male India Telugu

1010 D No 48 Yes 55 - 64 Male US English

1014 HS Yes U Hobby 2 No 18 - 24 Female China Chinese

1015 HS Yes U Professional 5 No 18 - 24 Male US English

1016 B No 4 No 18 - 24 Male US English

1017 B No 4 Yes 18 - 24 Male US English

1020 HS Yes U Hobby 3 No 18 - 24 Female US Mongolian

1022 HS Yes U Professional 3 No 18 - 24 Male US English

1023 HS Yes U Hobby 4 No 18 - 24 Male Malaysia English

1024 B Yes G Professional 3 Yes 25 - 34 Male Indonesia Kannada

1027 HS Yes U None 3 No 18 - 24 Male US English

1028 HS Yes U Professional 4 No 18 - 24 Female China Chinese

1029 HS Yes U Hobby 3 No 18 - 24 Male Myanmar Burmese

1031 HS Yes U Professional 4 No 18 - 24 Male US English

1032 HS Yes U Professional 4 No 18 - 24 Male US Chinese

1033 HS Yes U Hobby 10 No 18 - 24 Male US English

1034 HS Yes U Hobby 2 Yes 18 - 24 Male US English

1036 A Yes U Hobby 3 No 18 - 24 Female India Hindi

1037 B No 7 Yes 18 - 24 Female US English

1038 HS Yes U None 5 No 18 - 24 Female India Kannada

1040 M No 7 No 18 - 24 Male India

1041 B Yes U Professional 8 Yes 18 - 24 Male US English

1042 HS Yes U 2 No 18 - 24 Female US Tamil

1043 HS Yes U Hobby 1 No 18 - 24 Male China Chinese

1045 HS Yes U None 1 No 18 - 24 Female India Hindi

1046 HS Yes U Professional 3 Yes 18 - 24 Female India Hindi

2001 B Yes G Professional 9 Yes 18 - 24 Male US Chinese

2003 D Yes G Professional 15 Yes 25 - 34 Male US English

Control education student type experience years security age gender country language

22 HS Yes U None 5 No 18 - 24 Male US English

177 B Yes G Hobby 3 Yes 18 - 24 Female

178 HS Yes U Professional 7 No 18 - 24 Male Brazil Portuguese

1002 M Yes G Professional 13 Yes 25 - 34 Male China Chinese

1005 HS Yes U Professional 10 Yes 18 - 24 Male US English

1009 HS Yes U Hobby 8 Yes 18 - 24 Trans Male US English

1012 HS Yes U Hobby 1 No 18 - 24 Female China Chinese

1013 HS Yes U Hobby 3 No 18 - 24 Male Hong Kong Chinese

1018 B Yes U Professional 3 No 18 - 24 Female China Chinese

1019 HS Yes U Hobby 13 No 18 - 24 Male US English

1030 HS Yes U Professional 5 No 18 - 24 Male US English

1035 B No 8 No 18 - 24 Male US English

1039 HS Yes U Professional 4 No 18 - 24 Male US English

2002 B Yes G Professional 7 No 18 - 24 Male US English

Table 7: Education contains the highest level of education a participant has achieved, where A is an Associates degree, B is a

Bachelors degree, HS is a high school diploma, and D is a Doctoral or Professional Degree. Type contains the type of student,

where U is undergraduate and G is graduate. Years contains the number of years of programming experience that a participant

has. Security indicates if the participant has taken a security class.

CCS ’23, November 26–30, 2023, Copenhagen, Denmark. Neil Perry, Megha Srivastava, Deepak Kumar, and Dan Boneh

Mistake AI non-AI

Q1 auth 58% 9%

padding 12% 0%

trivial 36% 6%

mode 9% 0%

library 0% 0%

Q2 random 48% 15%

Q3 parent 61% 15%

symlink 73% 15%

Q4 sql injection 30% 6%

Q5 buffer overflow 12% 6%

local pointer 9% 9%

int overflow 15% 3%

Table 8: Percentage of mistakes made within the experiment

group, broken down by the originator of the mistake (AI vs

non-AI).

9.5 Demographics

Table 7 contains more detailed demographics on the participant

population for the experiment and control groups.

9.6 Regression Tables

Table 3 contains the data for the logistic regression used in Sec-

tion 4. Data was bucketed as follows. For Q1, “Secure” and “Partially

Secure” answers were grouped as secure. “Insecure” answers were

grouped as insecure. For Q2, “Secure” answers were grouped as

secure. “Partially Secure” and “Insecure” answers were grouped

as insecure. For Q3, “Secure” and “Partially Secure” answers were

grouped as secure. “Insecure” answers were grouped as insecure.

For Q4, “Secure” answers were grouped as secure and “Insecure”

answers were grouped as insecure. For Q5, “Secure”, “RC”, and “DoS”

answers were grouped as secure. “Partially Secure” and “Insecure”

answers were grouped as insecure. “Partially Secure” answers were

placed into different buckets for different questions due to their

varying severity. Note that while this table reports results for the

effect of the experiment/control groups, we determine statistical

significance of this treatment for particular security buckets (e.g.

only “Insecure”) using Welch’s unequal variance t-test in our main

reported results.

	Abstract
	1 Introduction
	2 Background & Related Work
	3 Methods
	3.1 Building Security-Related Tasks
	3.2 Recruitment and Participant Pool
	3.3 Study Instrument
	3.4 Analysis Procedure
	3.5 Reproducability
	3.6 Ethics

	4 Security Analysis
	4.1 Q1: Encryption & Decryption
	4.2 Q2: Signing a Message
	4.3 Q3: Sandboxed Directory
	4.4 Q4: SQL
	4.5 Q5: C Strings
	4.6 Security Results Summary

	5 Trust Analysis
	6 Prompt Analysis
	6.1 Prompt Language
	6.2 Prompt Parameters
	6.3 Repair Strategies

	7 Discussion
	7.1 Degree of AI Influence on Responses
	7.2 Limitations
	7.3 Recommendations

	8 Conclusion
	Acknowledgments
	References
	9 Appendix
	9.1 Prescreening Question
	9.2 Survey Questions
	9.3 UI Figures
	9.4 AI vs non-AI Experiment
	9.5 Demographics
	9.6 Regression Tables

