

SD321955

Autodesk Vault 2020 -- Programming 101

Markus Koechl

Autodesk – Central Europe

Jeffrey Fishman

Autodesk Inc.

Description

Get started programming Vault Workgroup or Vault Professional applications, extensions, and

custom jobs. The Vault 2020 Software Development Kit (SDK) shares new templates and

sample code removing barriers accessing the entry-level in Vault Web Services, Vault Job

Processor, and Vault Client programming. This class discusses real-life automation and

extension tasks and guides the reader through the steps required to solve them.

Learning Objectives

• Vault API – Overview and Introduction

o Understand different concepts accessing Vault software’s programming

interface for customization and automation

• Vault 2020 SDK – Templates

o Learn how to leverage the new SDK templates to get done your first custom

application, job and client extension quickly.

• Vault Inventor Server

o Get insights on programming custom jobs using VaultInventorServer

capabilities.

Your AU Experts

Markus Koechl is a Solution Engineer for Vault Products. He targets customer needs, practical

workflows, and is always eager to overcome barriers by extensions or automation. That’s the

simple reason that he started programming Inventor, Inventor iLogic, and Vault APIs with the

background of a Mechanical Engineer.

Jeffrey Fishman is a Software Engineer for the Autodesk Vault product. He is driven by

creative strategy and exploration -- seeking to understand and ultimately improve upon current

methodologies and workflows in place today, for a more focused and streamlined tomorrow.

Contents
Autodesk Vault 2020 -- Programming 101 .. 1

1 Introduction ... 5

1.1 Target Audience and Target Workflow ... 5

1.2 Class Materials .. 5

1.3 Setup Working Environment .. 6

1.3.1 Install Vault SDK ... 6

1.3.2 Install Visual Studio 2017 .. 6

1.3.3 Install Class Templates ... 7

1.4 Autodesk Vault API Overview .. 7

1.4.1 General Access Using Webservices ... 8

1.4.2 Job Processor API .. 8

1.4.3 Web Services API – Event Handling ... 8

1.4.4 The Role of Vault Data Standard – Another API? ... 9

2 Hands-On | Automation Sample ...12

2.1 Use Case 1 | Description ..12

2.2 Use Case 1 | Solution Steps ...12

2.3 PowerShell Solution ..12

2.3.1 Solution Step 1 – Create New Script ..13

2.3.2 Licensing ...14

2.3.3 Solution Step 2 – Load the Webservices Assembly ...14

2.3.4 Solution Step 3 – Connect to Vault ..15

2.3.5 Solution Step 4 – Execute the task ..16

2.3.6 Solution Step 5 – Debugging, Error Handling and Return Values19

2.4 C# Solution ...20

2.4.1 Solution Step 1 – Create New Script ..20

2.4.2 Licensing ...20

2.4.3 Solution Step 3 – Connect to Vault ..22

2.4.4 Solution Step 4 – Execute the task ..23

2.4.5 Solution Step 5 – Debugging, Error Handling and Return Values25

2.4.6 Alternate Solution – Avoid coding/scripting of user credentials26

2.5 Use Case 1 | Summary ...26

3 Hands-On – Use Case 2 | Job Handler Extension ..27

3.1 Use Case 2 | Description ..27

3.2 Use Case 2 | Solution Steps ...27

3.2.1 Solution Step 1 – Create a New Custom Job ...28

3.2.2 Validate Job Registration ...28

3.2.3 Job Registration – Trouble Shooting ..31

3.2.4 Solution Step 2 – Establish Job Handler Debugging ..31

3.2.5 Solution Step 3 – Coding the Job’s Task ..33

3.2.6 Solution Step 4 – Complete Error Handling ..38

3.3 Use Case 3 | Takeaways ..38

4 Hands-On – Use Case 3 | Event Handler ...39

4.1 Use Case 3 | Description ..39

4.2 Use Case 3 | Solution Steps ...39

4.2.1 Solution Step 1 – Create New Event Handler “Add Folder”40

4.2.2 Solution Step 2 – Coding ...41

4.2.3 Solution Step 3 – Adding Restrictions to Move Folder Events45

4.3 Use Case 3 | Summary ...46

5 Outlook ..47

1 Introduction

Read this Handout to review all examples used and gather supplementary information in detail.

The Download of “Additional Materials” shares the final solution of all samples and one more

solution template.

1.1 Target Audience and Target Workflow

This class addresses administrators, consultants, applications engineers, and programmers

experienced in codings against one or more Autodesk APIs, like Inventor iLogic, AutoCAD

vLisp, or Inventor or AutoCAD .NET add-ins. Do you belong to this group, and are you eager to

include Vault programming and expect some guidance about where to start? Or have you

already tried building a solution based on SDK samples, but failed to get these stripped down to

your essential requirement?

The approach and material of this class should lower the entry-level and get you started.

We will focus on general principles to get each project type set up, registered for use and

accessible in debug mode, before writing code. Frequently I am getting asked to review “huge”

projects to get these loaded or executed in Vault clients. And sometimes, we also are asked

how to run the SDK sample projects. Because of these experiences, we are using the order –

Define new project using the best matching template framework -> Compile and familiarize

debugging -> Start coding.

1.2 Class Materials

1. Follow the presentation reviewing all samples code complete. The VStudio Solutions-

UseCases1to3.zip shares a separate project for each sample.

2. Follow the hands-on chapters of this document and create new projects consuming the

template shared in API-Onboarding-PowerShell.zip for Sample-01. Sample-01-

CSharp, Sample-02, and Sample-03 base on templates of the SDK. Reusing these in

your future coding at least will allow repeating the successful setup for each extension

type.

1.3 Setup Working Environment

1.3.1 Install Vault SDK

Each Vault Client installation includes the full SDK containing API Help Documentation,

samples, and tools to support you writing custom extensions, jobs, or applications for Vault.

Note – The Autodesk Vault API requires no additional license in general; Vault API and SDK

also include 3rd party libraries from DevExpress. These DLLs are free to use and redistribute

within the context of the Vault API. However, direct use of the DLLs requires a developer

license; in this case, buy permits from DevExpress (http://www.devexpress.com/).

Navigate to C:\Program Files\Autodesk\Vault Professional

2020\SDK\Setup.exe to run the SDK setup.

The SDK and its documentation can be found in C:\Program Files\Autodesk\Autodesk

Vault 2020 SDK\docs\VaultSDK.chm.

1.3.2 Install Visual Studio 2017

Visual Studio 2017 is available in free and commercial editions. All samples are written in C#.

Sample-01 offers two

solutions: A PowerShell

project and a C#

project. To open .\Sample-01\.Sample-01.sln you need Visual Studio with PowerShell Tools

enabled.

Alternatively, use Visual Studio Code Editor (Free), with PowerShell

extension. This editor is smart, offering IntelliSense and comfortable

access/view of variables in debug mode.

http://www.devexpress.com/

1.3.3 Install Class Templates

Copy the SDK templates to your Visual Studio installation’s ProjectTemplates folder:

Add the PowerShell project template from this class “Additional Material” download:

1.4 Autodesk Vault API Overview

Vault is a client/server architecture; the access to server components – data management

server and filestore server leverages client-side web services. It requires either a Vault Client

installed or the re-use

of SDK libraries for

independent

applications.

1.4.1 General Access Using Webservices

Hands-On / Use Case 1 leverages the main SDK

library to use PowerShell scripts or C# code for

Vault connections and executing folder create

tasks in Vault.

1.4.2 Job Processor API

Hands-On / Use Case 2 creates an extension

adding a custom job handler; the job’s task is

creating and saving Thin Client links initiated on

lifecycle changes.

1.4.3 Web Services API – Event Handling

Hands-On / Use Case 3 implements an

extension to leverage the event of adding new

folders. The solution introduces how to add

Thin Client links to project folders on the

creation and how to prevent users from moving

a project.

1.4.4 The Role of Vault Data Standard – Another API?

Vault Data Standard (VDS) installs as extensions for Vault Explorer, Inventor Vault and

AutoCAD/AutoCAD Mechanical Vault.

VDS extends Vault Explorer by additional commands and workflows:

• Create a new file in the current folder consuming vaulted templates

• Create a folder with properties

• Extend custom commands, e.g., create a project folder with a subfolder structure

• Each control and dialog allow to apply custom rules, e.g., to enforce input or to autofill

properties.

VDS also extends the user interface by customizable dialogs and tabs:

Figure 1 - Vault Data Standard UI Samples

For CAD applications Inventor and AutoCAD/AutoCAD Mechanical VDS shares custom dialogs

on save events; handling it, VDS not only offers the dialog but also checks against custom rules

for metadata.

And last but not least, VDS for Inventor also adds workflow commands, e.g., to replace

components by new copy/new copy including drawing and others, that usually require a series

of commands and tasks.

The primary purpose of VDS is to apply company standards to workflows enforcing rules and

guidance handling metadata and file locations.

To adopt standards, customize rules, and user interface VDS uses Microsoft WPF dialog and UI

elements (Windows Presentation Foundation – WPF) plus PowerShell scripting to implement

custom rules. The dialog templates and scripts consume Vault Web Services API; so, we see

VDS more as an addition customization layer than API access. However – advanced scripting

allows using Vault API Web Services API libraries as well.

2 Hands-On | Automation Sample

2.1 Use Case 1 | Description

Workflows frequently span multiple systems. E.g., engineering projects can get kicked off by an

order submitted within a CRM system. Our task is to allow any system to start a command

creating new project folders in Vault.

2.2 Use Case 1 | Solution Steps

Use Case 1 Solutions Steps are available for PowerShell and C# languages. The overall

procedure of connecting to Vault, executing a task, and releasing the connection are the same.

The prerequisites and files to include for distribution to other computers are different.

2.3 PowerShell Solution

Before you start using PowerShell, ensure that the execution policy allows running unsigned

scripts on the client.

2.3.1 Solution Step 1 – Create New Script

Start a new PowerShell project selecting the script template installed before1.

Alternatively, open the template script .\Additional Material\ API-Onboarding-PowerShell.ps1 in

VSCode and save as a new copy.

Reviewing the existing regions in the script Vault-Script.ps1 file, you quickly will recognize areas

for implementation (#region) but also code to establish the connection.

1 To install class templates review instruction in chapter 1.3.3

2.3.2 Licensing

PowerShell runtime works as the hosting application while a script executes. To enable Vault

access, we need to distribute the Vault SDK licensing library alongside the primary executable.

You need to copy the file AdskLicensingSDK_2.dll to PowerShell execution folder

C:\Windows\System32\WindowsPowerShell\v1.0 on any computer running the script.

Any license type requires this step. We select the license type in section “Connect to Vault”.

2.3.3 Solution Step 2 – Load the Webservices Assembly

Vault WebServices are the core – you surely remember the overview discussed before. We

need to load the assembly first to interact with Vault.

Check the Vault version in case the template applies to futures releases of Vault SDK.

2.3.4 Solution Step 3 – Connect to Vault

Specify the connection parameters (1) and the license type (2):

Note – Selecting the license type “Client” requires a Vault Client installed on your machine and

activated. Autodesk Licensing allows computer-based activation (single user) or network

licensing. Any application needs to include the licensing library to communicate either with the

local (computer) license service or the network license server.

If you are concerned about sharing user/password information in scripts, you find an alternate

solution approach reading chapter 2.4; it is applicable in PowerShell as well.

Test your connectivity by executing selections or step into activating a breakpoint.

In case of failure – review the output window:

or better the PowerShell Interactive Window:

2.3.5 Solution Step 4 – Execute the task

Starting to write the script, you might ask how to find the methods/method names required to

perform our desired actions.

Once we have the WebServiceManager $vault, things are getting more comfortable, as

IntelliSense will help to find appropriate methods and properties.

To enable this, don’t miss to run the code as far as it is.

Note – You can use Telerik’s Fiddler extended by coolOrange’s vapiTrace to

record all Vault API calls of manually performed tasks in Vault. For installation

and further information, visit the web pages of Telerik,

http://www.telerik.com/fiddler, and coolOrange,

https://www.coolorange.com/en/apps_vault.php. A video tutorial in Vault

Knowledge Network instructs how to configure and use this powerful tool with

the sample adding a folder with the project category in Vault. The video is

available here: http://autode.sk/2ltSYYs

To add a new project folder, we have two options:

• Add a new folder, then update the category

• Add a new folder with a given category

The class solution project Sample-01.sln contains both possibilities. Let’s follow the second

approach for now.

We use the method AddFolderWithCategory; compare the Help documentation to get detailed

information about which service it belongs to, and about the input- and return values.

First, we need a name for the new folder. Note – For simplification, we use the direct coding of

the new folder’s name. In reality, you will use this as a parameter starting the script. The

implementation (transferring the new name and a title property value) for this looks like:

The command expects a parent folder where to start. It could be the root ‘$/’ or any subfolder,

like ‘$/Designs/’:

http://www.telerik.com/fiddler
https://www.coolorange.com/en/apps_vault.php
http://autode.sk/2ltSYYs

To set the category, we need to get the project category’s definition ID:

Now, we can call the method:

Run the script and review the result in Vault:

As we coded the new name as a static value in the script, any repetitive run will fail as the folder

already exists. We proceed using this failure to review the debug options and error handling in

the next steps.

2.3.6 Solution Step 5 – Debugging, Error Handling and Return Values

Don’t miss to set a breakpoint as Visual Studio PowerShell doesn’t allow stepping into from the

beginning. Open the Local (Variables) Window to review each’s step return values:

The next run (with the new project folder already created) will exit with the error “1011”.

Search in Vault SDK Help for the error value and confirm that 1011 is the code reflecting our

failure:

2.4 C# Solution

2.4.1 Solution Step 1 – Create New Script

Start a new C# project selecting the script

template installed before2.

Open the class “Program.cs”:

Reviewing the existing

regions in the script Vault-

Script.ps1 file, you quickly

will recognize areas for

implementation (#region) but

also code to establish the

connection.

2.4.2 Licensing

Compiling the project “Sample-01-CSharp” results in a standalone executable. To enable Vault

access, we need to distribute the Vault SDK licensing library alongside the primary executable.

The SDK template API-Onboarding Console Application references the required library

2 To install SDK templates review instruction in chapter 1.3.3

“AdskLicensingSDK_2.dll” and also enabled copying to the output directory.

The same applies to all other SDK references:

Autodesk Licensing allows computer-based activation (single user) or network licensing. Any

application needs to include the licensing library to communicate either with the local (computer)

license service or the network license server.

The library needs to copy with your application files.

There is detailed documentation about the core references required in the Knowledgebase of

SDK Help: chapter WCF and the SDK.

2.4.3 Solution Step 3 – Connect to Vault

Specify the connection parameters (1) and the license type (2):

Note – Selecting the license type “Client” requires a Vault Client installed on your machine and

activated.

If you are concerned about sharing user/password information in scripts, you find an alternate

solution approach reading chapter 2.4; it is applicable in PowerShell as well.

Test your connectivity; build and run or step into activating a breakpoint.

2.4.4 Solution Step 4 – Execute the task

Starting to write the script, you might ask how to find the methods/method names required to

perform our desired actions.

Note – You can use Telerik’s Fiddler extended by coolOrange’s vapiTrace to

record all Vault API calls of manually performed tasks in Vault. For installation

and further information, visit the web pages of Telerik,

http://www.telerik.com/fiddler, and coolOrange,

https://www.coolorange.com/en/apps_vault.php. A video tutorial in Vault

Knowledge Network instructs how to configure and use this powerful tool with

the sample adding a folder with the project category in Vault. The video is

available here: http://autode.sk/2ltSYYs

To add a new project folder, we have two options:

• Add a new folder, then update the category

• Add a new folder with a given category

The class solution project Sample-01-CSharp.sln follows the second approach.

We use the method AddFolderWithCategory; compare the Help documentation to get detailed

information about which service it belongs to, and about the input- and return values.

http://www.telerik.com/fiddler
https://www.coolorange.com/en/apps_vault.php
http://autode.sk/2ltSYYs

First, we need a name for the new folder. Note – For simplification, we use the direct coding of

the new folder’s name.

In reality, you will use this as a parameter starting the script.

The add folder command expects a parent folder where to start. It could be the root ‘$/’ or any

subfolder, like ‘$/Designs/’:

To set the category, we need to get the project category’s definition ID:

Now, we can call the method:

Build the project script, step into,

and review the result in Vault:

As we coded the new name as a static value in the script, any repetitive run will fail as the folder

already exists. We proceed using this failure to review the debug options and error handling in

the next steps.

2.4.5 Solution Step 5 – Debugging, Error Handling and Return Values

The next run (with the new project folder already created) will exit with the error “1011”.

Search in Vault SDK Help for the error value and confirm that 1011 is the code reflecting our

failure:

2.4.6 Alternate Solution – Avoid coding/scripting of user credentials

Instead of adding user credentials to the code to a script or command line parameters, we can

leverage the Vault Development Framework API. It offers a predefined user dialog to log-on and

options to auto-login in with given encrypted credentials. Compare the project “Sample-01-

CSharp-VDF” on how to do this. The pre-requisite is adding the framework libraries:

The code looks like this:

2.5 Use Case 1 | Summary

PowerShell scripting is straightforward accessing Vault. It requires no compiler or specific editor.

However, consuming the console template for C# having all libraries and references set, also is

quickly ready to run.

Besides the preferred programming language, you always should consider limiting your server

calls to the minimum. We listed two options to create a folder with a category. Both options

require as many requests as many projects you need to add. The first approach combines one

more: Update the added folder(s)’ categories. In this case, only a single additional method call

solves it, because the function updates multiple folders.

3 Hands-On – Use Case 2 | Job Handler Extension

3.1 Use Case 2 | Description

Frequently other business systems expect information, files, or links from Vault. If the

information is related to CAD files, usually neutral format files like DWF, PDF, STEP, DXF, or

others copy to the enterprise system or repository. Vault comes with default jobs for DWF and

PDF, and this sample enables you creating custom jobs translating to any other format

supported by Inventor.

The solution demonstrates how to create a STEP export for part or assembly components and

how to add the result as a Design Representation Attachment:

3.2 Use Case 2 | Solution Steps

Based on a class template, less complicated than any SDK sample, we are going to establish a

custom job handler, validate its registration and access for debugging. Once you are familiar

with these preconditions, coding can start.

3.2.1 Solution Step 1 – Create a New Custom Job

Start a new

solution/project selecting

the API-Onboarding

Custom Job template3.

3.2.2 Validate Job Registration

Build the project; the template has everything

set:

- The output folder

- The job name to register in Vault Job

Processor

3 To install class templates review instruction in chapter 1.3.3

Start the Job Processor and review the new Job in the Job Types window.

We verified that the new job is ready to register and run on our job processor. Before we

proceed, we should change the name of the new job. As a best practice a job name follows

these recommendations:

• Select a name that explains the job’s primary purpose, in our sample it is STEP-Export

• Add your company name; this will allow differentiating multiple jobs of similar names.

Continue changing the name in the Extension class code:

Repeat the rename action also in the extension’s config file:

Re-build the project to activate the new Job name’s registration. Start the job processor again

and validate the new name:

3.2.3 Job Registration – Trouble Shooting

What should you cross-check first, if your Job Type doesn’t list

your new job?

• Is the output folder matching your Vault version’s extension

folder? (Program Data\Autodesk\Vault

<version>\Extensions\<JobName>

• Are the required files listed?

What should you compare and adjust, if your job is listed, but not

enabled in the Job Types dialog?

• Ensure that names match in dll and .vcet.config

3.2.4 Solution Step 2 – Establish Job Handler Debugging

Let’s establish debugging as the last step before coding the job’s core functionality. Make sure

that your Job Processor is up and running:

To capture all the events we are going to attach two processes:

1. The job processing delegate host: Connectivity.JobProcessor.Delegate.Host.exe

2. The job processor application itself

Our new job is ready for execution, the debugger waiting to step into a job’s execution. But how

can we submit this job to the queue?

The usual way of doing this is,

adding the job name to a

lifecycle transition.

To submit a job, I prefer using

a “special” lifecycle called “API-

Custom-Job-Test”; it defines

two states, and each transition

enables the job submission. So

lifecycle changes on a file

attached to it behave like a

toggle.

Once you submitted the job to the queue, the template’s built-in execution brings up a message

box “Hello World”.

3.2.5 Solution Step 3 – Coding the Job’s Task

During the introduction, we already mentioned that this class is not about learning each API

method and its parameter details but more the concepts and systematic approach to implement

automation and extensions. So again, open the class’ final solution Sample-02.sln in parallel for

review. We separated the execution into five regions:

For these 5 sub-tasks, additional APIs are

needed – the Vault Development Framework

VDF and Inventor API. Add these to the project

references:

3.2.5.1 Pickup the job’s context, connect to Vault Inventor Server and set conditions to

proceed

We pick-up the job context to get the WebServiceManager object; several services and

methods will need it later:

We also take the file iteration object (it is a particular version of the file). Note – it might happen

that before the job got the file from the queue another user increased the file version already.

The job will refuse execution (built-in restriction) if the file is not the latest version. To avoid this,

additional steps to get the latest available file version are applicable.

The job’s context also shares the configured Inventor Object; as a default, it is InventorServer –

the JobProcessor.exe.config file allows switching to full Inventor also.

As many file types may add to the queue, we need to filter target file types for CAD format

export.

3.2.5.2 Get the model file from Vault and open it using VaultInventorServer

Downloading a file, you need to set all options that a user would do in the user interface of Vault

Explorer. Considering assembly files, we set download options securing a full loaded assembly,

including all components.

Note – In the API are more options available handling file resolution. That is important if a job

processor uses temporary working folders instead of the default configured one.

Don’t weaken a process by having existing files in your working folder. We recommend

overwriting existing files for job execution always. You better might also clean-up your working

folder regularly.

With the completion of the download settings, the download executes:

The file results contain all files and do not

follow the hierarchical order. Therefore, we

need to filter our source file.

Inventor API to open documents expects the

full local path. The file extension is another

handy detail to replace it later by the Translator

format’s given extension. We can pick-up the primary file like this:

3.2.5.3 Create the export format using VaultInventorServer

VaultInventorServer uses the same API as Inventor. All translator add-ins are available to

VaultInventorServer for activation.

Lookup the translator add-in’s id in the bin\addins*.addin file or debug print listing all. Each

translator’s option is listed in the Inventor API Help documentation. Access it from Inventor ->

Help -> Programming Help.

Now, open the source file in Full Mode by applying the OpenOptions:

The translator saves the new file:

3.2.5.4 Pick-up the result (export file) and upload to vault

Adding the exported file to Vault requires a pre-check: “Does the file already exist?”

If no, we continue adding the file.

If it exists, then we are supposed to update the existing one.

To do this – check-out the existing and check-in the new.

Note – ensure not to overwrite the local (new) export file while checking out.

3.2.5.5 Attach the uploaded export file to the source file as Design Representation

Attaching the uploaded file is the final step in this introduction.

For production usage, you should also synchronize status and properties from the source to the

export file. To learn these additional two actions, review the fully functional sample available

here:https://github.com/koechlm/Vault-Sample---STEPExportJob

3.2.6 Solution Step 4 – Complete Error Handling

The template implements a rough structure to feedback errors to the Vault Job Queue. As a

minimum, always feedback the job success/failure and the step of failure. As a best practice –

don’t leave possible shortcomings up to the exception handling. Handle them, stop processing,

and feedback specifically to the Job Queue.

3.3 Use Case 3 | Takeaways

• Always validate your custom job’s framework before writing code

o Job name registration | Job submission | Debugging

• Download settings are essential for successful job execution

o Plan these using the user interface

• The sample solution relies on enforced Vault settings for the Inventor project and

working folder.

https://github.com/koechlm/Vault-Sample---STEPExportJob
https://github.com/koechlm/Vault-Sample---STEPExportJob

o Compare the complete sample mentioned below, how to pro-actively handle

Inventor project files.

• The sample solution does not synchronize file status and properties

o Get a fully functional sample solution from my GitHub repository.

4 Hands-On – Use Case 3 | Event Handler

4.1 Use Case 3 | Description

Frequently other business systems expect information, files, or links from Vault. Instead of

copying files, we are going to implement Thin Client links for sharing access to them.

Once a new Vault adds a new project, the event “new folder added” should retrieve a persistent

Id. This Id is a permanent reference to an entity within a Thin Client Server URL.

4.2 Use Case 3 | Solution Steps

Create an event handler extension for Vault Clients that subscribes to the Event “AddFolder”.

Not any folder should fire share a link, only folders with category “Project”.

Another Event to subscribe is the MoveFolder; with that we easily can prevent projects from

being moved.

4.2.1 Solution Step 1 – Create New Event Handler “Add Folder”

Start a new project/solution selecting the SDK template “API-Onboarding Event Handler”4:

The output path should reflect the project’s name as a default; you may change it as well:

Prepare to debug and activate the start external program for C:\Program Files\Autodesk\Vault

Professional 2020\Explorer\Connectivity.VaultPro.exe:

4 To install class templates review instruction in chapter 1.3.3

4.2.2 Solution Step 2 – Coding

The extension template contains all available web service events; I suggest to uncomment all

unused ones.

Each web service event offers to split into three notifications; for adding folders we can hook on

AddFolderEvents.Post. The get restriction fires before any action starts. It allows adding a

restriction if we encountered missing conditions or pre-requisites. Restrictions are Vault objects

sharing a GUI to display the restriction text (reason of the restriction).

The pre-event fires before the entity originate. At this stage we could retrieve additional

information that might help to decide whether the folder should create or that we restrict the

operation.

The post-event allows us to grab the new entity and, e.g., add metadata.

We split the planned action into two sub-tasks:

4.2.2.1 Create Thin Client Link

The event’s sender is the DocumentServiceExtensions. We can cast the sender object to it.

The WebServiceManager is the parent of all services, so we get it from the

DocumentServiceExtension.

Persistent IDs are supposed to be static identifiers unchanged during future Vault release

migrations. Entity Ids are database keys and might change if a database scheme updates.

Therefore, Persistent IDs are the most reliable reference to pick files, folders, items, change

orders, or custom entities.

The Persistent Id is part of the full URL of entities directing to the Thin Client Server:

<ThinClient Service URL>/AutodeskTC/<ServerName>/<VaultName>/#/Entity/Entities?folder=<PersistentID>&start=0

You can get the scheme hitting the user interface command Send Link; the resulting email gives

a sample for each entity type you selected.

The variables of the URL fill best with values from the DocumentService URL and the active

user credentials:

4.2.2.2 Add Property and Value to the Project Folder

The method DocumentServiceExtensions.UpdateFolderProperties() is pretty powerful; it allows

us to update a set of properties for many folders in a single call. Well, in our case, we have one

sole property for a single folder, and the method might look over-engineered. Jump on the

opportunity to get prepared for future big property transfers! Build the structure from the ground,

and it demystifies – I am confident.

First get familiar with the structure of the property instance array arrays:

To fill (or read) these nested arrays always follow bullheaded the same structure:

Note – I prefer handling List<> over array objects and convert these as late as possible.

Don’t forget to create a User Defined Property in the Vault behavior configuration. Activate it for

folder entities:

That’s it! Time to set a breakpoint and start the debugging session to follow in detail on how it

works.

To invoke the event, create a new project folder in Vault Explorer.

Right after you can also run the Sample-01 code; it will not hit the breakpoint, but should also

get the new project including a property “ThinClient Link”:

4.2.3 Solution Step 3 – Adding Restrictions to Move Folder Events

The use case's main target was to share a persistent link to view documents of a project in Thin

Client.

Due to the persistent Id, the Thin Client access will persist for ever – even if the entity moved.

In Vault Explorer, aka Thick Client, the move of folders is not appreciated, and administrators

often ask to prevent it. Our Event Handler easily can add a restriction to the folder move event.

The Dialog listing the object invoking the restriction is part of the API and allows consistent

restriction feedback to the user for Autodesk Vault built-in ones as well as our custom ones.

Implementing restrictions is straightforward, as the event argument offers a method to add a

restriction by name and user message.

.

As a sample, we now implement that folders in Vault no longer move. For that enable the

restriction event for folder move first:

Adding a restriction is a single line call handing over the source object’s name and the text

explaining the reason, why we stop the running process at this point:

The more complicated task implementing restrictions usually is to define and analyze all pre-

requisites and conditions that have to match before the restriction adds. For our scenario we

performed an easy one, just checking for the folder’s category against the “Project” name.

4.3 Use Case 3 | Summary

Event handlers are extensions like job handlers. The significant difference is that they react to

events in general, whereas job handlers respond to specific job types added to the queue. In

other words, also a job might fire an event that the handler will pick up. It is powerful, and even

more as it allows to restrict the execution easily. Not any task is best execute during events and

better run on job processor. Consider circular iterations or dependencies; events called as a

sub-event fire another loop before the calling event finished. Job handling easier allows splitting

a complicated job into sub-jobs, which perform subsequently. Job processing allows putting

sub-sequent jobs to the queue. If you limit a particular job type to a single processor, the calling

job will have finished before the new initiated one starts.

And last but not least, consider that events are handled and performed by the user logged in to

Vault; so, this user’s role and permissions determine the ability to execute.

5 Outlook

You walked through a variety of API samples and use cases! Thank you for your interest and

resilience in reaching this last short chapter.

Do you already face tasks to be solved by custom programming? Are you thinking about “which

extension type handles my necessary actions at best?

We have some criteria and arguments that should help to decide quickly on the path to go.

