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1 WHAT IS ERROR STATISTICS?

Error statistics, as we are using that term, has a dual dimension involving philos-
ophy and methodology. It refers to a standpoint regarding both:

1. a cluster of statistical tools, their interpretation and justification,

2. a general philosophy of science, and the roles probability plays in inductive
inference.

To adequately appraise the error statistical approach, and compare it to other
philosophies of statistics, requires understanding the complex interconnections be-
tween the methodological and philosophical dimensions in (1) and (2) respectively.
To make this entry useful while keeping to a manageable length, we restrict our
main focus to (1) the error statistical philosophy. We will however aim to bring
out enough of the interplay between the philosophical, methodological, and statis-
tical issues, to elucidate long-standing conceptual, technical, and epistemological
debates surrounding both these dimensions. Even with this restriction, we are
identifying a huge territory marked by generations of recurring controversy about
how to specify and interpret statistical methods. Understandably, standard ex-
plications of statistical methods focus on the formal mathematical tools without
considering a general philosophy of science or of induction in which these tools
best fit. This is understandable for two main reasons: first, it is not the job of
statisticians to delve into philosophical foundations, at least explicitly. The second
and deeper reason is that the philosophy of science and induction for which these
tools are most apt—we may call it the error statistical philosophy —will differ
in central ways from traditional conceptions of the scientific method. These dif-
ferences may be located in contrasting answers to a fundamental pair of questions
that are of interest to statisticians and philosophers of science:

• How do we obtain reliable knowledge about the world despite uncertainty and
threats of error?

• What is the role of probability in making reliable inferences?
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To zero in on the main issues, we will adopt the following, somewhat unusual
strategy: We shall first set out some of the main ideas within the broader error sta-
tistical philosophy of induction and inquiry, identifying the goals and requirements
that serve both to direct and justify the use of formal statistical tools. Next we
turn to explicating statistical methods, of testing and estimation, while simulta-
neously highlighting classic misunderstandings and fallacies. The error statistical
account we advocate builds on Fisherian and Neyman-Pearsonian methods; see
[Fisher, 1925; 1956; Neyman, 1952; Pearson, 1962]. While we wish to set out for
the reader the basic elements of these tools, as more usually formulated, we will
gradually transform them into something rather different from both Fisherian and
Neyman-Pearsonian paradigms.

Our goals are twofold: to set the stage for developing a more adequate philos-
ophy of inductive inquiry, and to illuminate crucial issues for making progress on
the “statistical wars”, now in their seventh decade1.

1.1 The Error Statistical Philosophy

Under the umbrella of error-statistical methods, one may include all standard
methods using error probabilities based on the relative frequencies of errors in
repeated sampling – often called sampling theory or frequentist statistics. Fre-
quentist statistical methods are sometimes erroneously equated to other accounts
that employ frequentist probability, for example, the “frequentism” in the logic
of confirmation. The latter has to do with using relative frequencies of occur-
rences to infer probabilities of events, often by the straight rule, e.g., from an
observed proportion of As that are Bs to infer the proportion of As that are Bs
in a population.

1. One central difference, as Neyman [1957] chided Carnap, is that, unlike fre-
quentist logics of confirmation, frequentist statistics always addresses ques-
tions or problems within a statistical model2 (or family of models) M in-
tended to provide an approximate (and idealized) representation of the pro-
cess generating data x0:=(x1, x2, . . . , xn). M is defined in terms of f(x; θ),
the probability distribution of the sample X:=(X1, ..., Xn), that assigns prob-
abilities to all events of interest belonging to the sample space R

n
X . Formal

error statistical methods encompass the deductive assignments of proba-
bilities to outcomes, given a statistical model M of the experiment, and
inductive methods from the sample to claims about the model. Statisti-
cal inference focuses on the latter step: moving from the data to statistical
hypotheses, typically couched in terms of unknown parameter(s) θ, which
governs f(x; θ).

1The ‘first act’ might be traced to the papers by Fisher [1955], Pearson [1955], Neyman [1956].
2Overlooking the necessity of clearly specifying the statistical model — in terms of a complete

set of probabilistic assumptions — is one of the cardinal sins still committed, especially by non-
statisticians, in expositions of frequentist statistics.
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2. The second key difference is how probability arises in induction. For the
error statistician probability arises not to measure degrees of confirmation
or belief (actual or rational) in hypotheses, but to quantify how frequently
methods are capable of discriminating between alternative hypotheses and
how reliably they facilitate the detection of error. These probabilistic prop-
erties of inductive procedures are error frequencies or error probabilities.

The statistical methods of significance tests and confidence-interval estimation
are examples of formal error-statistical methods. A statistical inference might be
an assertion about the value of θ, say that θ > 0. Error probabilities attach,
not directly to θ > 0, but to the inference tools themselves, whether tests or
estimators. The claims concerning θ are either correct or incorrect as regards
the mechanism generating the data. Insofar as we are interested in using data
to make inferences about this mechanism, in this world, it would make no sense
to speak of the relative frequency of θ > 0, as ‘if universes were as plenty as
blackberries from which we randomly selected this one universe’, as Peirce would
say (2.684). Nevertheless, error probabilities are the basis for determining whether
and how well a statistical hypothesis such as θ > 0 is warranted by data x0 at
hand, and for setting bounds on how far off parameter values can be from 0 or
other hypothetical values. Since it is the use of frequentist error probabilities, and
not merely the use of frequentist probability that is central to this account, the
term error statistics (an abbreviation of error probability statistics) seems an apt
characterization.

Statistical Significance Test

Formally speaking, the inductive move in error statistics occurs by linking special
functions of the data, d(X), known as statistics, to hypotheses about parameter(s),
θ of interest. For example, a test might be given as a rule: whenever d(X) exceeds
some constant c, infer θ > 0, thereby rejecting θ = 0:

Test Rule: whenever {d(x0) > c}, infer θ > 0.

Any particular application of an inductive rule can be ‘in error’ in what it
infers about the data generation mechanism, so long as data are limited. If we
could calculate the probability of the event {d(X) > c} under the assumption
that θ=0, we could calculate the probability of erroneously inferring θ > 0. Error
probabilities are computed from the distribution of d(X), the sampling distribution,
evaluated under various hypothesized values of θ. The genius of formal error
statistics is its ability to provide inferential tools where the error probabilities of
interest may be calculated, despite unknowns.

Consider a simple and canonical example of a statistical test, often called a
statistical significance test. Such a test, in the context of a statistical model M,
is a procedure with the following components:

1. a null hypothesis H0, couched in terms of unknown parameter θ, and
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2. a function of the sample, d(X), the test statistic, which reflects how well or
poorly the data x0 accord with the null hypothesis H0 — the larger the
value of d(x0) the further the outcome is from what is expected under H0 —
with respect to the particular question being asked. A crucial aspect of an
error statistical test is its ability to ensure the sampling distribution of the
test statistic can be computed under H0 and under hypotheses discrepant
from H0. In particular, this allows computing:

3. the significance level associated with d(x0): the probability of a worse fit
with H0 than the observed d(x0), under the assumption that H0 is true:

p(x0) = P (d(X) > d(x0); H0).

This is known either as the observed significance level or the p-value. The
larger the value of the test statistic the smaller the p-value. Identifying a rele-
vant test statistic, together with the need to calculate the error probabilities,
restricts the choices of test statistic so as to lead to a uniquely appropriate
test, whether one begins with Neyman-Pearson (N-P) or Fisherian objectives
[Cox, 1958].

Consider for example the case of a random sample X of size n from a Normal
distribution with unknown mean μ and, for simplicity, known variance σ2 (denoted
by N(μ, σ2)). We want to test the hypotheses:

(1) H0 : μ = μ0 vs. H1 : μ > μ0.

The test statistic of this one-sided test is d(X)= (X−μ0)
σx

, where X= 1
n

∑n
k=1 Xk

denotes the sample mean and σx=(σ/
√

n). Given a particular outcome x0, we
compute d(x0). An inductive or ampliative inference only arises in moving from
d(x0) — a particular outcome — to a hypothesis about parameter μ. Consider
the test rule: whenever X exceeds μ0 by 1.96σx or more, infer H1: μ > μ0. Use
of the statistic d(X) lets us write this test rule more simply:

Test Rule T : whenever {d(x0) > 1.96}, infer H1: μ > μ0.

We deductively arrive at the probability of the event {d(X) > 1.96} under
the assumption that H0 correctly describes the data generating process, namely
P (d(X) > 1.96; H0)=.025, giving the statistical significance level .025.

Tests, strictly speaking, are formal mapping rules. To construe them as infer-
ence tools requires an interpretation beyond the pure formalism, and this can be
done in various ways. For instance, a Fisherian may simply output “the observed
significance level is .025”; a Neyman-Pearson tester, might report “reject H0” hav-
ing decided in advance that any outcome reaching the .025 significance level will
lead to this output. But these reports themselves require fleshing out, and a good
deal of controversy revolves around some of the familiar ways of doing so.
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Behavioristic and evidential philosophies

By a “statistical philosophy” we understand a general conception of the aims
and epistemological foundations of a statistical methodology. Thus an important
task for an error statistical philosophy is to articulate the interpretation and the
rationale for outputs of inductive tests. For instance, continuing with our example,
a Fisherian might declare that whenever {d(x0) > 1.96}:

“infer that H0 is falsified at level .025”.

A strict Neyman-Pearsonian might identify ‘rejectH0’ with a specific action,
such as:

“publish the result” or “reject the shipment of bolts”.

Consider a third construal: whenever {d(x0) > 1.96} infer that the data x0 is
evidence for a (positive) discrepancy γ from μ0 :

“infer x0 indicates μ > μ0 + γ”.

The weakest claim is to infer some discrepancy — as with the typical non-null
hypothesis. More informatively, as we propose, one might specify a particular
positive value for γ. For each we can obtain error probabilistic assertions:

Assuming that H0 is true, the probability is .025 that:

• H0 is falsified (at this level),

• the shipment of bolts is rejected,

• some positive discrepancy γ from μ0 is inferred.

Each of these interpretations demands a justification or rationale, and it is a cru-
cial part of the corresponding statistical philosophy to supply it. Error statistical
methods are typically associated with two distinct justifications:

Behavioristic rationale. The first stresses the ability of tests to control error
probabilities at some low level in the long run. This goal accords well with what is
generally regarded as Neyman’s statistical philosophy wherein tests are interpreted
as tools for deciding “how to behave” in relation to the phenomena under test, and
are justified in terms of their ability to ensure low long-run errors. Neyman [1971]
even called his tests tools for inductive behavior, to underscore the idea that the
test output was an action, as well as to draw the contrast with Bayesian inductive
inference in terms of degrees of belief.
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Inferential rationale A non-behavioristic or inferential justification stresses
the relevance of error probabilities for achieving inferential and learning goals. To
succeed it must show how error probabilities can be used to characterize warranted
inference in some sense. The key difference between behavioristic and inferential
construals of tests is not whether one views an inference as a kind of decision (which
one is free to do), but rather in the justificatory role given to error probabilities.

On the behavioristic philosophy, the goal is to adjust our behavior so that in the
long-run we will not act erroneously too often: it regards low long-run error rates
(ideally, optimal ones) alone as what justifies a method. This does not yield a
satisfactory error statistical philosophy in the context of scientific inference. How
to provide an inferential philosophy for error statistics has been the locus of the
most philosophically interesting controversies. Although our main focus will be
on developing an adequate inferential construal, there are contexts wherein the
more behavioristic construal is entirely appropriate, and we propose to retain it
within the error statistical umbrella3. When we speak of “the context of scientific
inference” we refer to a setting where the goal is an inference about what is the
case regarding a particular phenomenon.

Objectivity in error statistics

Underlying the error statistical philosophy, as we see it, is a conception of the objec-
tive underpinnings for uncertain inference: although knowledge gaps leave plenty
of room for biases, arbitrariness, and wishful thinking, in fact we regularly come
up against experiences that thwart our expectations, disagree with the predictions
and theories we try to foist upon the world, and this affords objective constraints
on which our critical capacity is built. Getting it (at least approximately) right,
and not merely ensuring internal consistency or agreed-upon convention, is at the
heart of objectively orienting ourselves toward the world. Our ability to recognize
when data fail to match anticipations is what affords us the opportunity to system-
atically improve our orientation in direct response to such disharmony. Much as
Popper [1959] takes the ability to falsify as the foundation of objective knowledge,
R.A. Fisher [1935, p. 16] developed statistical significance tests based on his view
that “every experiment may be said to exist only in order to give the facts the
chance of disproving the null hypothesis”. Such failures could always be avoided by
“immunizing” a hypothesis against criticism, but to do so would prevent learning
what is the case about the phenomenon in question, and thus flies in the face of
the aim of objective science. Such a strategy would have a very high probability of
saving false claims. However, what we are calling the error-statistical philosophy
goes beyond falsificationism, of both the Popperian and Fisherian varieties, most
notably in its consideration of what positive inferences are licensed when data do
not falsify but rather accord with a hypothesis or claim.

Failing to falsify hypotheses, while rarely allowing their acceptance as precisely
true, may warrant excluding various discrepancies, errors or rivals. Which ones?

3Even in science there are tasks whose goal is avoiding too much noise in the network.
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Those which, with high probability, would have led the test to issue a more dis-
cordant outcome, or a more statistically significant result. In those cases we may
infer that the discrepancies, rivals, or errors are ruled out with severity.

Philosophy should direct methodology (not the other way around). To imple-
ment the error statistical philosophy requires methods that can accomplish the
goals it sets for uncertain inference in science. This requires tools that pay explicit
attention to the need to communicate results so as to set the stage for others to
check, debate, scrutinize and extend the inferences reached. Thus, any adequate
statistical methodology must provide the means to address legitimate critical ques-
tions, to give information as to which conclusions are likely to stand up to further
probing, and where weaknesses remain. The much maligned, automatic, recipe-
like uses of N-P tests wherein one accepts and rejects claims according to whether
they fall into prespecified ‘rejections regions’ are uses we would also condemn.
Rather than spend time legislating against such tests, we set out principles of in-
terpretation that automatically scrutinize any inferences based on them. (Even
silly tests can warrant certain claims.) This is an important source of objectivity
that is open to the error statistician: choice of test may be a product of subjec-
tive whims, but the ability to critically evaluate which inferences are and are not
warranted is not.

Background knowledge in the error statistical framework of ‘active’ inquiry

The error statistical philosophy conceives of statistics very broadly to include the
conglomeration of systematic tools for collecting, modeling and drawing inferences
from data, including purely ‘data analytic’ methods that are normally not deemed
‘inferential’. In order for formal error statistical tools to link data, or data models,
to primary scientific hypotheses, several different statistical hypotheses may be
called upon, each permitting an aspect of the primary problem to be expressed
and probed. An auxiliary or ‘secondary’ set of hypotheses are needed to check the
assumptions of other models in the complex network; see section 4. Its ability to
check its own assumptions is another important ingredient to the objectivity of
this approach.

There is often a peculiar allegation (criticism) that:

(#1) error statistical tools forbid using any background
knowledge,

as if one must start each inquiry with a blank slate. This allegation overlooks the
huge methodology of experimental design, data analysis, model specification and
work directed at linking substantive and statistical parameters. A main reason for
this charge is that prior probability assignments in hypotheses do not enter into the
calculations (except in very special cases). But there is no reason to suppose the
kind of background information we need in order to specify and interpret statistical
methods can or should be captured by prior probabilities in the hypotheses being
studied. (We return to this in section 3). But background knowledge must enter
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in designing, interpreting, and combining statistical inferences in both informal
and semi-formal ways. Far from wishing to inject our background opinions in
the hypotheses being studied, we seek designs that help us avoid being misled or
biased by initial beliefs. Although we cannot fully formalize, we can systematize
the manifold steps and interrelated checks that, taken together, constitute a full-
bodied experimental inquiry that is realistic.

The error statistician is concerned with the critical control of scientific inferences
by means of stringent probes of conjectured flaws and sources of unreliability.
Standard statistical hypotheses, while seeming oversimple in and of themselves,
are highly flexible and effective for the piece-meal probes the error statistician
seeks. Statistical hypotheses offer ways to couch conjectured flaws in inference,
such as:

mistaking spurious for genuine correlations,

mistaken directions of effects,

mistaken values of parameters,

mistakes about causal factors,

mistakes about assumptions of statistical models.

The qualities we look for to express and test hypotheses about such inference
errors are generally quite distinct from those required of the substantive scien-
tific claims about which we use statistical tests to learn. Unless the overall error
statistical philosophy is recognized, the applicability and relevance of the formal
methodology will be misunderstood, as it often is. Although the overarching goal
of inquiry is to find out what is (truly) the case about aspects of phenomena,
the hypotheses erected in the actual processes of finding things out are generally
approximations (idealizations) and may even be deliberately false.

The picture corresponding to error statistics is one of an activist learner in the
midst of an inquiry with the goal of finding something out. We want hypotheses
that will allow for stringent testing so that if they pass we have evidence of a gen-
uine experimental effect. The goal of attaining such well-probed hypotheses differs
crucially from seeking highly probable ones (however probability is interpreted).
We will say more about this in section 3.

1.2 An Error Statistical Philosophy of Science

The error statistical philosophy just sketched alludes to the general methodologi-
cal principles and foundations associated with frequentist error statistical methods.
By an error statistical philosophy of science, on the other hand, we have in mind
the application of those tools and their interpretation to problems of philosophy of
science: to model scientific inference (actual or rational), to scrutinize principles of
inference (e.g., prefer novel results, varying data), and to frame and tackle philo-
sophical problems about evidence and inference (how to warrant data, pinpoint
blame for anomalies, test models and theories). Nevertheless, each of the points
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in 1.1 about statistical methodology has direct outgrowths for the philosophy of
science dimension. The outgrowths yield:

(i) requirements for an adequate philosophy of evidence and inference, but also

(ii) payoffs for using statistical science to make progress on philosophical prob-
lems.

(i) In order to obtain a philosophical account of inference from the error statis-
tical perspective, one would require forward-looking tools for finding things
out, not for reconstructing inferences as ‘rational’ (in accordance with one
or another view of rationality). An adequate philosophy of evidence would
have to engage statistical methods for obtaining, debating, rejecting, and
affirming data. From this perspective, an account of scientific method that
begins its work only once well-defined evidence claims are available forfeits
the ability to be relevant to understanding the actual processes behind the
success of science.

(ii) Conversely, it is precisely because the contexts in which statistical methods
are most needed are ones that compel us to be most aware of strategies
scientists use to cope with threats to reliability, that considering the nature
of statistical method in the collection, modeling, and analysis of data is so
effective a way to articulate and warrant principles of evidence.

In addition to paving the way for richer and more realistic philosophies of sci-
ence, we claim, examining error statistical methods sets the stage for solving or
making progress on long-standing philosophical problems about evidence and in-
ductive inference.

• Where the recognition that data are always fallible presents a challenge to
traditional empiricist foundations, the cornerstone of statistical induction is
the ability to move from less to more accurate data.

• Where the best often thought feasible is getting it right in some asymptotic
long-run, error statistical methods ensure specific precision in finite samples,
and supply ways to calculate how large a sample size n needs to be.

• Where pinpointing blame for anomalies is thought to present insoluble Duhemian
problems and underdetermination, a central feature of error statistical tests
is their capacity to evaluate error probabilities that hold regardless of un-
known background or nuisance parameters.

• Where appeals to statistics in conducting a meta-methodology too often
boil down to reconstructing one’s intuition in probabilistic terms, statistical
principles of inference do real work for us — in distinguishing when and why
violations of novelty matter, when and why irrelevant conjuncts are poorly
supported, and so on.
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Although the extended discussion of an error statistical philosophy of science
goes beyond the scope of this paper (but see [Mayo, 1996; Mayo and Spanos, 2010]),
our discussion should show the relevance of problems in statistical philosophy
for addressing the issues in philosophy of science — which is why philosophy of
statistics is so rich a resource for epistemologists. In the next section we turn to
the central error statistical principle that links (1.1) the error statistical philosophy
and (1.2) an error statistical philosophy of science.

1.3 The Severity Principle

A method’s error probabilities describe its performance characteristics in a hypo-
thetical sequence of repetitions. How are we to use error probabilities in making
particular inferences? This leads to the general question:

When do data x0 provide good evidence for, or a good test of, hypoth-
esis H?

Our standpoint begins with the situation in which we would intuitively deny x0

is evidence for H. Data x0 fail to provide good evidence for the truth of H if the
inferential procedure had very little chance of providing evidence against H, even
if H is false.

Severity Principle (weak). Data x0 (produced by process G) do
not provide good evidence for hypothesis H if x0 results from a test
procedure with a very low probability or capacity of having uncovered
the falsity of H, even if H is incorrect.

Such a test we would say is insufficiently stringent or severe. The onus is on
the person claiming to have evidence for H to show that they are not guilty of
at least so egregious a lack of severity. Formal error statistical tools are regarded
as providing systematic ways to foster this goal, as well as to determine how well
it has been met in any specific case. Although one might stop with this negative
conception (as perhaps Fisher and Popper did), we will go on to the further,
positive one, which will comprise the full severity principle:

Severity Principle (full). Data x0 (produced by process G) provides
good evidence for hypothesis H (just) to the extent that test T severely
passes H with x0.

Severity rationale vs. low long-run error-rate rationale (evidential vs. behavioral
rationale)

Let us begin with a very informal example. Suppose we are testing whether and
how much weight George has gained between now and the time he left for Paris,
and do so by checking if any difference shows up on a series of well-calibrated and
stable weighing methods, both before his leaving and upon his return. If no change
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on any of these scales is registered, even though, say, they easily detect a difference
when he lifts a .1-pound potato, then this may be regarded as grounds for inferring
that George’s weight gain is negligible within limits set by the sensitivity of the
scales. The hypothesis H here might be:

H: George’s weight gain is no greater than δ,

where δ is an amount easily detected by these scales. H, we would say, has passed
a severe test: were George to have gained δ pounds or more (i.e., were H false),
then this method would almost certainly have detected this.

A behavioristic rationale might go as follows: If one always follows the rule going
from failure to detect a weight gain after stringent probing to inferring weight gain
no greater than δ, then one would rarely be wrong in the long run of repetitions.
While true, this is not the rationale we give in making inferences about George.
It is rather that this particular weighing experiment indicates something about
George’s weight. The long run properties — at least when they are relevant for
particular inferences — utilize error probabilities to characterize the capacity of
our inferential tool for finding things out in the particular case. This is the severity
rationale.

We wish to distinguish the severity rationale from a more prevalent idea for how
procedures with low error probabilities become relevant to a particular application;
namely, the procedure is rarely wrong, therefore, the probability it is wrong in this
case is low. In this view we are justified in inferring H because it was the output of
a method that rarely errs. This justification might be seen as intermediate between
full-blown behavioristic justifications, and a genuine inferential justification. We
may describe this as the notion that the long run error probability ‘rubs off’ on
each application. This still does not get at the reasoning for the particular case
at hand. The reliability of the rule used to infer H is at most a necessary and
not a sufficient condition to warrant inferring H. What we wish to sustain is this
kind of counterfactual statistical claim: that were George to have gained more
than δ pounds, at least one of the scales would have registered an increase. This
is an example of what philosophers often call an argument from coincidence: it
would be a preposterous coincidence if all the scales easily registered even slight
weight shifts when weighing objects of known weight, and yet were systematically
misleading us when applied to an object of unknown weight. Are we to allow that
tools read our minds just when we do not know the weight? To deny the warrant
for H, in other words, is to follow a highly unreliable method: it would erroneously
reject correct inferences with high or maximal probability (minimal severity), and
thus would thwart learning. The stronger, positive side of the severity principle
is tantamount to espousing the legitimacy of strong arguments from coincidence.
What statistical tests enable us to do is determine when such arguments from
coincidence are sustainable (e.g., by setting up null hypotheses). It requires being
very specific about which inference is thereby warranted—we may, for example,
argue from coincidence for a genuine, non-spurious, effect, but not be able to
sustain an argument to the truth of a theory or even the reality of an entity.



164 Deborah G. Mayo and Aris Spanos

Passing a Severe Test.

We can encapsulate this as follows:

A hypothesis H passes a severe test T with data x0 if,

(S-1) x0 accords with H, (for a suitable notion of accordance) and

(S-2) with very high probability, test T would have produced a result
that accords less well with H than x0 does, if H were false or incorrect.

Equivalently, (S-2) can be stated:

(S-2)*: with very low probability, test T would have produced a result
that accords as well as or better with H than x0 does, if H were false
or incorrect.

Severity, in our conception, somewhat in contrast to how it is often used, is
not a characteristic of a test in and of itself, but rather of the test T , a specific
test result x0, and a specific inference H (not necessarily predesignated) being
entertained. That is, the severity function has three arguments. We use the
notation: SEV (T,x0,H), or even SEV (H), to abbreviate:

“The severity with which claim H passes test T with outcome x0”.

As we will see, the analyses may take different forms: one may provide a series of
inferences that pass with high and low severity, serving essentially as benchmarks
for interpretation, or one may fix the inference of interest and report the severity
attained.

The formal statistical testing apparatus does not include severity assessments,
but there are ways to use the error statistical properties of tests, together with
the outcome x0, to evaluate a test’s severity in relation to an inference of interest.
This is the key for the inferential interpretation of error statistical tests. While, at
first blush, a test’s severity resembles the notion of a test’s power, the two notions
are importantly different; see section 2.

The severity principle, we hold, makes sense of the underlying reasoning of tests,
and addresses chronic problems and fallacies associated with frequentist testing.
In developing this account, we draw upon other attempts to supply frequentist
foundations, in particular by Bartlett, Barnard, Birnbaum, Cox, Efron, Fisher,
Lehmann, Neyman , E. Pearson; the severity notion, or something like it, affords
a rationale and unification of several threads that we have extracted and woven
together. Although mixing aspects from N-P and Fisherian tests is often charged
as being guilty of an inconsistent hybrid [Gigerenzer, 1993], the error statistical
umbrella, linked by the notion of severity, allows for a coherent blending of elements
from both approaches. The different methods can be understood as relevant for
one or another type of question along the stages of a full-bodied inquiry. Within
the error statistical umbrella, the different methods are part of the panoply of
methods that may be used in the service of severely probing hypotheses.
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A principle for interpreting statistical inference vs. the goal of science

We should emphasize at the outset that while severity is the principle on which
interpretations of statistical inferences are based, we are not claiming it is the goal
of science. While scientists seek to have hypotheses and theories pass severe tests,
severity must be balanced with informativeness. So for example, trivially true
claims would pass with maximal severity, but they would not yield informative
inferences4. Moreover, one learns quite a lot from ascertaining which aspects of
theories have not yet passed severely. It is the basis for constructing rival theories
which existing tests cannot distinguish, and is the impetus for developing more
probative tests to discriminate them (see [Mayo, 2010a]).

2 A PHILOSOPHY FOR ERROR STATISTICS

We review the key components of error statistical tests, set out the core ingredients
of both Fisherian and N-P tests, and then consider how the severity principle
directs the interpretation of frequentist tests. We are then in a position to swiftly
deal with the specific criticisms lodged at tests.

2.1 Key Components of Error-Statistical Tests

While we focus, for simplicity, on inferences relating to the simple normal model
defined in section 1.1, the discussion applies to any well-defined frequentist test.

A One-Sided Test Tα. We elaborate on the earlier example in order to make
the severity interpretation of tests concrete.

EXAMPLE 1. Test Tα. Consider a sample X :=(X1, ..., Xn) of size n, where each
Xn is assumed to be Normal (N(μ, σ2)), Independent and Identically Distributed
(NIID), denoted by:

M : Xk � NIID(μ, σ2), −∞<μ<∞, k=1, 2, . . . , n, . . .

Let μ be the parameter of interest and assume at first that σ2 is known; this
will be relaxed later. Consider the following null and alternative hypotheses of
interest:

(2) H0 : μ = μ0 vs. H1 : μ > μ0.

The test statistic or distance function is: d(X)= (X−μ0)
σx

, where σx=(σ/
√

n). Note
that d(X) follows a common pattern for forming such a measure of discordance:

[estimated — expected (underH0)], measured in standard deviation
units.

4For an extreme case, demonstrating that not-H yields a logical contradiction shows, with
maximal severity, that H is tautologous.
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Under the null, d(X) is distributed as standard Normal, denoted by:

d(X)=
(X − μ0)

σx
� N(0, 1).

This is a very important result because it enables one to ensure that:

P (d(X) > cα; H0) = α.

For instance, cα for α = .025 is 1.96; see figures 1(a)-(d). We also have:

P (observing a p-value ≤ α) ≤ α.

In the simple Fisherian test, the p-value indicates the level of inconsistency
between what is expected and what is observed in the sense that the smaller the
p-value the larger the discordance between x0 and H0 [Cox, 1958]. If the p-value
is not small, if it is larger than some threshold α (e.g., .01) then the disagreement
is not considered strong enough to indicate evidence of departures from H0. Such
a result is commonly said to be insignificantly different from H0, but, as we will
see, it is fallacious to automatically view it as evidence for H0. If the p-value is
small enough, the data are regarded as grounds to reject or find a discrepancy
from the null. Evidence against the null suggests evidence for some discrepancy
from the null, although it is not made explicit in a simple Fisherian test.

Reference to ‘discrepancies from the null hypothesis’ leads naturally into Neyman-
Pearson [1933] territory. Here, the falsity of H0 is defined as H1 the complement of
H0 with respect to the parameter space Θ. In terms of the p-value, the Neyman-
Pearson (N-P) test may be given as a rule:

if p(x0) ≤ α, reject H0 (infer H1); if p(x0) > α, do not reject H0.

Equivalently, the test fixes cα at the start as the cut-off point such that any
outcome smaller than cα is taken to “accept” H0. Critics often lampoon an
automatic-recipe version of these tests. Here the tester is envisioned as simply
declaring whether or not the result was statistically significant at a fixed level α,
or equivalently, whether the data fell in the rejection region.

Attention to the manner in which tests are used, even by Neyman, however,
reveals a much more nuanced and inferential interpretation to which these formal
test rules are open. These uses (especially in the work of E. Pearson) provide a
half-way house toward an adequate inferential interpretation of tests:

Accept H0: statistically insignificant result — “decide” (on the basis
of the observed p value) that there is insufficient evidence to infer
departure from H0, and

Reject H0: statistically significant result — “decide” (on the basis of
the observed p-value) that there is some evidence of the falsity of H0

in the direction of the alternative H1.
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Although one could view these as decisions, we wish to interpret them as infer-
ences. All the N-P results would continue to hold with either construal.

The N-P test rule: Reject H0 iff d(x0) > cα,

ensures the probability of rejecting (i.e., declaring there is evidence against) H0

when H0 is true — a type I error — is α. Having fixed α, the key idea behind N-P
tests is to minimize the probability of a type II error (failing to reject H0 when
H1 is true), written as β(μ1) :

P (d(X) ≤ cα;μ=μ1) = β(μ1), for any μ1 greater than μ0.

That is, the test minimizes the probability of finding “statistical agreement” with
H0 when some alternative hypothesis H1 is true. Note that the set of alternatives
in this case includes all μ1 > μ0, i.e. H1 is a composite hypothesis, hence the
notation β(μ1). Equivalently, the goal is to maximize the power of the test , for a
fixed cα :

POW (Tα;μ1) = P (d(X) > cα;μ1), for any μ1 greater than μ0.

In the behavioristic construal of N-P tests, these goals are put in terms of
wishing to avoid behaving erroneously too often. But, the tests that grow out of
the requirement to satisfy the N-P pre-data, long-run desiderata often lead to a
uniquely appropriate test, whose error probabilities simultaneously can be shown
to satisfy severity desiderata. The severity construal of N-P tests underscores the
role of error probabilities as measuring the ‘capacity’ of the test to detect different
discrepancies γ ≥ 0 from the null, where μ1=(μ0+γ). The power of a ‘good’ test
is expected to increase with the value of γ.

Pre-data, these desiderata allow us to ensure two things:

(i) a rejection indicates with severity some discrepancy from the null, and

(ii) failing to reject the null rules out with severity those alternatives against
which the test has high power.

Post-data, one can go much further in determining the magnitude γ of discrepan-
cies from the null warranted by the actual data in hand. That will be the linchpin
of our error statistical construal. Still, even N-P practitioners often prefer to re-
port the observed p-value rather than merely whether the predesignated cut-off
for rejection has been reached, because it “enables others to reach a verdict based
on the significance level of their choice” [Lehmann, 1993, p. 62]. What will be
new in the severity construal is considering sensitivity in terms of the probability
of {d(X) > d(x0)}, under various alternatives to the null rather than the N-P
focus on {d(X) > cα}. That is, the error statistical construal of tests will require
evaluating this ‘sensitivity’ post-data (relative to d(x0), not cα); see [Cox, 2006].

We now turn to the task of articulating the error-statistical construal of tests
by considering, and responding to, classic misunderstandings and fallacies.
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2.2 How severity gives an inferential interpretation while scotching
familiar fallacies

Suppose the observed p-value is .01. This report might be taken to reject the null
hypothesis H0 and conclude H1. Why? An N-P behavioristic rationale might note
that deciding to interpret the data this way would rarely be wrong. Were H0 true,
so large a d(x0) would occur only 1% of the time. In our inferential interpretation,
the fact that the p-value is small (p(x0) = .01) supplies evidence for H1 because
H1 has passed a severe test: with high probability (1− p(x0)) such an impressive
departure from H0 would not have occurred if H0 correctly described the data
generating procedure. The severity definition is instantiated because:

(S-1): x0 accords with H1, and (S-2): there is a high probability (.99)
that a less statistically significant difference would have resulted, were
H0 true.

This is entirely analogous to the way we reasoned informally about George’s
weight. Granted, evidence from any one test might at most be taken as some
evidence that the effect is genuine. But after frequent rejections of H0, H1 passes
a genuinely severe test because, were H1 false and the null hypothesis H0 true, we
would very probably have obtained results that accord less well with H1 than the
ones we actually observed. So the p-value gives the kind of data-dependency that
is missing from the coarse N-P tests, and it also lends itself to a severity construal
— at least with respect to inferring the existence of some discrepancy from the
null. We have an inferential interpretation, but there are still weaknesses we need
to get around. A pair of criticisms relating to statistically significant results, are
associated with what we may call “fallacies of rejection”.

2.3 Fallacies of rejection (errors in interpreting statistically signifi-
cant results)

First there is the weakness that, at least on an oversimple construal of tests:

(#2) All statistically significant results are treated the
same,

and second, that:

(#3) The p-value does not tell us how large a discrepancy
is found.

We could avoid these criticisms if the construal of a statistically significant result
were in terms of evidence for a particular discrepancy from H0 (an effect size), that
is, for inferring: H:μ > μ1 = (μ0 + γ), (there is evidence of a discrepancy γ).

The severity reasoning can be used to underwrite such inferences about partic-
ular discrepancies γ ≥ 0 from the null hypothesis, i.e., μ > (μ0 + γ). For each
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result we need to show: (a) the discrepancies that are not warranted, and (b) those
which are well warranted. The basis for doing so is summarized in (a) and (b):

(a) If there is a very high probability of obtaining so large a d(x0) (even) if
μ ≤ μ1, then SEV (μ > μ1) is low. By contrast:

(b) If there is a very low probability of obtaining so large a d(x0) if μ ≤ μ1, then
SEV (μ > μ1) is high.

There are two key consequences. First, two different statistically significant
results are distinguished by the inferences they severely warrant (criticism #2).
Second, for any particular statistically significant result, the severity associated
with μ > μ2 will differ from (be less than) that associated with μ > μ1, for any
μ2 greater than μ1 (criticism #3).

Let us illustrate in detail with reference to our test Tα of hypotheses:

H0 : μ = 0 vs. H1 : μ > 0.

For simplicity, let it be known that σ=2, and suppose n=100, i.e. σx= .2. Let
us call a result “statistically significant” if it is statistically significant at the .025
level, i.e., d(x0) > 1.96. To address criticism #2, consider three different significant
results: d(x0)=2.0 (x=0.4), d(x0)=3.0 (x=0.6), d(x0)=5.0 (x=1.0).

Each statistically significant result “accords with” the alternative (μ > 0). So
(S-1) is satisfied. Condition (S-2) requires the evaluation of the probability that
test Tα would have produced a result that accords less well with H1 than x0

does (i.e. d(X) ≤ d(x0)), calculated under various discrepancies from 0. For
illustration, imagine that we are interested in the inference μ > .2. The three
different statistically significant outcomes result in different severity assignments
for the same inference μ > .2.

Begin with d(x0)=2.0 (x=0.4). We have:

SEV (μ > .2) = P (X < 0.4;μ > .2 is false) = P (X < 0.4;μ ≤ .2 is true).

Remember, we are calculating the probability of the event, {X < .4}, and the
claim to the right of the “;” should be read “calculated under the assumption that”
one or another values of μ is correct. How do we calculate P (X < .4;μ ≤ .2 is
true) when μ ≤ .2 is a composite claim? We need only to calculate it for the point
μ=.2 because μ values less than .2 would yield an even higher SEV value. The
severity for inferring μ > .2, when x=.4 is SEV (μ > .2) = .841. This follows from
the fact that the observation x=.4 is one standard deviation (σx=.2) in excess
of .2. The probability of the event (X > .4) under the assumption that μ=.2 is
.16, so the corresponding SEV is .841. By standardizing the difference (x−μ), i.e.

define a standardized Normal random variable Z = (x−μ)
σx

� N(0, 1), one can read
off the needed probabilities from the standard Normal tables. Figures 1(a)-(d)
show the probabilities beyond 1 and 2 standard deviation, as well as the .025 and
.05 thresholds, i.e. 1.645 and 1.96, respectively.
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Fig 1a. N(0, 1): Right tail prob-
ability beyond 1 (one) standard
deviation (SD).

Fig 1b. N(0, 1): Right tail prob-
ability beyond 2 (two) standard
deviations.
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Fig 1c. N(0, 1): 5% right tail
probability.

Fig 1d. N(0, 1): 2.5% right tail
probability.

Figure 1. Tail area probabilities of the standard normal N(0, 1)) distribution

Now, let us consider the two other statistically significant outcomes, retaining
this same inference of interest. When x=.6, we have SEV (μ > .2)=.977, since
x=.6 is 2 standard deviation in excess of the μ=.2. When x=1, SEV (μ > .2)=.999,
since x=1 is 4 standard deviation in excess of μ=.2. So inferring the discrep-
ancy μ > .2 is increasingly warranted, for increasingly significant observed values.
Hence, criticisms #2 and #3 are scotched by employing the severity evaluation.

If pressed, critics often concede that one can avoid the fallacies of rejection, but
seem to argue that the tests are illegitimate because they are open to fallacious
construals. This seems to us an absurd and illogical critique of the foundations of
tests. We agree that tests should be accompanied by interpretive tools that avoid
fallacies by highlighting the correct logic of tests. That is what the error statistical
philosophy supplies. We do not envision computing these assessments each time,
nor is this necessary. The idea would be to report severity values corresponding
to the inferences of interest in the given problem; several benchmarks for well
warranted and poorly warranted inferences would suffice.
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Figure 2. Significant result. Severity associated with inference μ > 0.2, with
different outcomes x0.

Figure 2 shows three severity curves for test Tα, associated with different out-

comes x0, where, as before, σ = 2, n = 100, d(x0) = (x−μ0)
σx

, μ0 = 0 :

for d(x0)=2.0 (x=0.4) : SEV (μ > 0.2)=.841,
for d(x0)=3.0 (x=0.6) : SEV (μ > 0.2)=.977,
for d(x0)=5.0 (x=1.0) : SEV (μ > 0.2)=.999.

The vertical line at μ=.2 pinpoints the inference in our illustration, but sliding it
along the μ axis one sees how the same can be done for different inferences, e.g.,
μ>.3, μ>.4, . . .

Criticism (#3) is often phrased as “statistical significance is not substantive
significance”. What counts as substantive significance is a matter of the context.
What the severity construal of tests will do is tell us which discrepancies are and are
not indicated, thereby avoiding the confusion between statistical and substantive
significance.

To illustrate the notion of warranted discrepancies with data x0, consider fig-
ure 3 where we focus on just one particular statistically significant outcome, say
x=0.4, and consider different discrepancies γ from 0 one might wish to infer, each
represented by a vertical line. To begin with, observe that SEV (μ > 0)=.977,
i.e. 1 minus the p-value corresponding to this test. On the other hand, as the
discrepancy increases from 0 to .2 the SEV (μ > .2) is a bit lower, but not too
bad: .841. We see that the SEV decreases as larger discrepancies from 0 are
entertained (remembering the outcome is fixed at x=0.4). An extremely useful
benchmark is μ > .4, since that is the inference which receives severity .5. So we
know immediately that SEV (μ > .5) is less than .5, and in particular it is .3. So
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x=0.4 provides a very poor warrant for μ > .5. More than half the time such a
significant outcome would occur even if μ ≤ .5.

Figure 3. Significant result. The severity for inferring different discrepancies μ > γ
with the same outcome x=0.4

Many general relationships can be deduced. For example, since the assertions
μ > μ1 and μ ≤ μ1 constitute a partition of the parameter space of μ we have:

SEV (μ > μ1) = 1 − SEV (μ ≤ μ1).

As before, severity is evaluated at a point μ1, i.e.

SEV (μ > μ1) = P (d(X) ≤ d(x0);μ=μ1).

Severity and Power with Significant Results: two key ponts

(i) It is important to note the relationship between our data-specific assessment
of an α-level statistically significant result and the usual assessment of the power
of test Tα at the alternative: μ1=(μ0 + γ). Power, remember, is always defined in
terms of a rejection rule indicating the threshold (cα) beyond which the result is
taken as statistically significant enough to reject the null; see section 2.1.

If d(x0) is then significant at the α-level, d(x0) > cα, the severity with which
the test has passed μ > μ1 is:

P (d(X) ≤ cα;μ=μ1) = 1 − POW (Tα;μ1).

But the observed statistically significant d(x0) could exceed the mere cut-off value
for significance cα. Should we take a result that barely makes it to the cut-off
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Figure 4. Juxtaposing the power curve with the severity curve for x = .4.

just the same as one farther out into the rejection region? We think not, and
the assessment of severity reflects this. As is plausible, the more significant result
yields a higher the severity for the same inference μ > μ1:

P (d(X) ≤ d(x0);μ > μ1) exceeds P (d(X) ≤ cα;μ > μ1).

That is, one minus the power of the test at μ1 provides a lower bound for the
severity associated with the inference μ > μ1.

The higher the power of the test to detect discrepancy γ, the lower the severity
associated with the inference: μ > (μ0 + γ) when the test rejects H0.

Hence, the severity with which alternative μ > (μ0 + γ) passes a test is not
given by, and is in fact inversely related to, the test’s power at: μ1=(μ0 + γ).

This can be seen in figure 4 which juxtaposes the power curve with the severity
curve for x=0.4. It is seen that the power curve slopes in the opposite direction
from the severity curve. As we just saw, the statistically significant result, x=0.4,
is good evidence for μ > .2 (the severity was .841), but poor evidence for the
discrepancy μ > .5 (the severity was .3). If the result does not severely pass
the hypothesis μ > .5, it would be even less warranted to take it as evidence
for a larger discrepancy, say μ > .8. The relevant severity evaluation yields:
P (d(X) ≤ 2.0;μ=.8) = .023, which is very low, but the power of the test at

μ=.8 is very high, .977.
Putting numbers aside, an intuitive example makes the point clear. The smaller

the mesh of a fishnet, the more capable it is of catching even small fish. So being
given the report that (i) a fish is caught, and (ii) the net is highly capable of
catching even 1 inch guppies, we would deny the report is good evidence of, say,
a 9 inch fish! This takes us to our next concern.
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2.4 Fallacies arising from overly sensitive tests

A common complaint concerning a statistically significant result is that for any
discrepancy from the null, say γ ≥ 0, however small, one can find a large enough
sample size n such that a test, with high probability, will yield a statistically
significant result (for any p-value one wishes).

(#4) With large enough sample size even a trivially small
discrepancy from the null can be detected.

A test can be so sensitive that a statistically significant difference from H0 only
warrants inferring the presence of a relatively small discrepancy γ; a large enough
sample size n will render the power POW (Tα;μ1=μ0 + γ) very high. To make
things worse, many assume, fallaciously, that reaching statistical significance at
a given level α is more evidence against the null the larger the sample size (n).
(Early reports of this fallacy among psychology researchers are in Rosenthal and
Gaito, 1963). Few fallacies more vividly show confusion about significance test
reasoning. A correct understanding of testing logic would have nipped this fallacy
in the bud 60 years ago. Utilizing the severity assessment one sees that an α-
significant difference with n1 passes μ > μ1 less severely than with n2 where
n1 > n2.

For a fixed type I error probability α, increasing the sample size decreases
the type II error probability (power increases). Some argue that to balance the
two error probabilities, the required α level for rejection should be decreased as
n increases. Such rules of thumb are too tied to the idea that tests are to be
specified and then put on automatic pilot without a reflective interpretation. The
error statistical philosophy recommends moving away from all such recipes. The
reflective interpretation that is needed drops out from the severity requirement:
increasing the sample size does increase the test’s sensitivity and this shows up in
the “effect size” γ that one is entitled to infer at an adequate severity level. To
quickly see this, consider figure 5.

It portrays the severity curves for test Tα, σ=2, n=100, with the same outcome
d(x0)=1.96, but based on different sample sizes (n=50, n=100, n=1000), indicating
that: the severity for inferring μ > .2 decreases as n increases:

for n=50 : SEV (μ > 0.2)=.895,
for n=100 : SEV (μ > 0.2)=.831,
for n=1000 : SEV (μ > 0.2)=.115.

The facts underlying criticism #4 are also erroneously taken as grounding the
claim:

“All nulls are false.”

This confuses the true claim that with large enough sample size, a test has power
to detect any discrepancy from the null however small, with the false claim that
all nulls are false.
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Figure 5. Severity associated with inference μ>0.2, d(x0)=1.96, and different
sample sizes n.

The tendency to view tests as automatic recipes for rejection gives rise to an-
other well-known canard:

(#5) Whether there is a statistically significant differ-
ence from the null depends on which is the null and
which is the alternative.

The charge is made by considering the highly artificial case of two point hypotheses
such as: μ=0 vs. μ=.8. If the null is μ=0 and the alternative is μ=.8 then x=0.4
(being 2σx from 0) “rejects” the null and declares there is evidence for .8. On the
other hand if the null is μ=.8 and the alternative is μ=0, then observing x=0.4
now rejects .8 and finds evidence for 0. It appears that we get a different inference
depending on how we label our hypothesis! Now the hypotheses in a N-P test
must exhaust the space of parameter values, but even entertaining the two point
hypotheses, the fallacy is easily exposed. Let us label the two cases:

Case 1: H0: μ=0 vs. H1: μ=.8, Case 2: H0: μ=.8 vs. H1: μ=0.

In case 1, x=0.4 is indeed evidence of some discrepancy from 0 in the positive
direction, but it is exceedingly poor evidence for a discrepancy as large as .8 (see
figure 2). Even without the calculation that shows SEV (μ > .8)=.023, we know
that SEV (μ > .4) is only .5, and so there are far less grounds for inferring an even
larger discrepancy5.

5We obtain the standardized value by considering the sample mean (x=.4) minus the hypoth-
esize μ (.8), in standard deviation units (σx=.2), yielding z=− 2, and thus P (Z < − 2)=.023.
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In case 2, the test is looking for discrepancies from the null (which is .8) in the
negative direction. The outcome x=0.4 (d(x0)=-2.0) is evidence that μ ≤ .8 (since
SEV (μ ≤ .8)=.977), but there are terrible grounds for inferring the alternative
μ=0!

In short, case 1 asks if the true μ exceeds 0, and x=.4 is good evidence of some
such positive discrepancy (though poor evidence it is as large as .8); while case 2
asks if the true μ is less than .8, and again x=.4 is good evidence that it is. Both
these claims are true. In neither case does the outcome provide evidence for the
point alternative, .8 and 0 respectively. So it does not matter which is the null
and which is the alternative, and criticism #5 is completely scotched.

Note further that in a proper test, the null and alternative hypotheses must ex-
haust the parameter space, and thus, “point-against-point” hypotheses are at best
highly artificial, at worst, illegitimate. What matters for the current issue is that
the error statistical tester never falls into the alleged inconsistency of inferences
depending on which is the null and which is the alternative.

We now turn our attention to cases of statistically insignificant results. Overly
high power is problematic in dealing with significant results, but with insignificant
results, the concern is the test is not powerful enough.

2.5 Fallacies of acceptance: errors in interpreting statistically in-
significant results

(#6) Statistically insignificant results are taken as evi-
dence that the null hypothesis is true.

We may call this the fallacy of interpreting insignificant results (or the fallacy of
“acceptance”). The issue relates to a classic problem facing general hypothetical
deductive accounts of confirmation: positive instances “confirm” or in some sense
count for generalizations. Unlike logics of confirmation or hypothetico-deductive
accounts, the significance test reasoning, and error statistical tests more generally,
have a very clear basis for denying this. An observed accordance between data
and a null hypothesis “passes” the null hypothesis, i.e., condition (S-1) is satisfied.
But such a passing result is not automatically evidence for the null hypothesis,
since the test might not have had much chance of detecting departures even if
they existed. So what is called for to avoid the problem is precisely the second
requirement for severity (S-2). This demands considering error probabilities, the
distinguishing feature of an error statistical account.

Now the simple Fisherian significance test, where the result is either to falsify
the null or not, leaves failure to reject in some kind of limbo. That is why Neyman
and Pearson introduce the alternative hypothesis and the corresponding notion of
power. Consider our familiar test Tα. Affirming the null is to rule out a discrepancy
γ > 0. It is unwarranted to claim to have evidence for the null if the test had
little capacity (probability) of producing a worse fit with the null even though the
null is false, i.e. μ > 0. In the same paper addressing Carnap, Neyman makes this
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point (p. 41)6, although it must be conceded that it is absent from his expositions
of tests. The severity account makes it an explicit part of interpreting tests (note

that d(x0) = (x−μ0)
σx

):

(a) If there is a very low probability that d(x0) would have been larger
than it is, even if μ exceeds μ1, then μ ≤ μ1 passes the test with low
severity, i.e. SEV (μ ≤ μ1) is low.

By contrast:

(b) If there is a very high probability that d(x0) would have been larger
than it is, were μ to exceed μ1, then μ ≤ μ1 passes the test with high
severity, i.e. SEV (μ ≤ μ1) is high.

To see how formal significance tests can encapsulate this, consider testing H0:
μ=0 vs. H1: μ > 0, and obtaining a statistically insignificant result: d(x0) ≤ 1.96.
We have (S-1): x0 agrees with H0 since d(x0) ≤ 1.96.

(S-1): x0 agrees with H0 since d(x0) ≤ 1.96. We wish to determine if it is good
evidence for μ ≤ μ1, where μ1=μ0 + γ, by evaluating the probability that test Tα

would have produced a more significant result (i.e. d(X) > d(x0)), if μ > μ1:

SEV (Tα,x0, μ ≤ μ1)=P (d(X) > d(x0);μ > μ1).

It suffices to evaluate this at μ1=μ0+γ because the probability increases for μ > μ1.
So, if we have good evidence that μ ≤ μ1 we have even better evidence that μ ≤ μ2

where μ2 exceeds μ1 (since the former entails the latter).

Rather than work through calculations, it is revealing to report several ap-
praisals graphically. Figure 6 shows severity curves for test Tα, where σ=2, n=100,
based on three different insignificant results:

d(x0)=1.95(x=.392), d(x0)=1.5(x=.3), d(x0)=.50(x=.1).

As before, let a statistically significant result require d(x0)>1.96. None of the
three insignificant outcomes provide strong evidence that the null is precisely true,
but what we want to do is find the smallest discrepancy that each rules out with
severity.

For illustration, we consider a particular fixed inference of the form (μ ≤ μ1),
and compare severity assessments for different outcomes. The low probabilities

6In the context where H0 had not been “rejected”, Neyman insists, it would be “dangerous”
to regard this as confirmation of H0 if the test in fact had little chance of detecting an important
discrepancy from H0, even if such a discrepancy were present. On the other hand if the test
had appreciable power to detect the discrepancy, the situation would be “radically different.”
Severity logic for insignificant results has the same pattern except that we consider the actual
insignificant result, rather than the case where data just misses the cut-off for rejection.
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Figure 6. Insignificant result. Severity associated with inference μ ≤ .2 with
different outcomes x0.

associated with the severity assessment of μ ≤ .2 indicates that, in all three cases,
the claim that the discrepancy is μ ≤ .2 is unwarranted (to the degrees indicated):

for d(x0)=1.95 (x=.39) : SEV (μ ≤ 0.2) = .171,
for d(x0)=1.5 (x=0.3) : SEV (μ ≤ 0.2) = .309,
for d(x0)=0.5 (x=0.1) : SEV (μ ≤ 0.2) = .691.

So it would be fallacious (to different degrees) to regard these as warranting μ ≤
0.2. To have a contrast, observe that inferring μ ≤ .6 is fairly warranted (to
different degrees) for all three outcomes:

for d(x0)=1.95 (x=.39) : SEV (μ ≤ 0.6) = .853,
for d(x0)=1.5 (x=0.3) : SEV (μ ≤ 0.6) = .933,
for d(x0)=0.5 (x=0.1) : SEV (μ ≤ 0.6) = .995.

Working in the reverse direction, it is instructive to fix a high severity value, say,
.95, and ascertain, for different outcomes, the discrepancy that may be ruled out
with severity .95. For x=0.39, SEV (μ ≤ .72)=.95, for x=0.3, SEV (μ ≤ .62)=.95,
and x=0.1, SEV (μ ≤ .43)=.95. Although none of these outcomes warrants ruling
out all positive discrepancies at severity level .95, we see that the smaller the
observed outcome x, the smaller is the μ1 value such that SEV (μ ≤ μ1) = .95.

It is interesting to note that the severity curve associated with d(x0) =1.95
virtually coincides with the power curve since cα=1.96 for α=.025. The power of
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the test to detect μ1 gives the lower bound for the severity assessment for (μ ≤ μ1);
this is the lowest it could be when an insignificant result occurs. High power at
μ1 ensures that insignificance permits inferring with high severity that μ ≤ μ1.
Thus severity gives an inferential justification for the predesignated power, but it
goes further. Once the result is available, it directs us to give a more informative
inference based on d(x0).

P-values are Not Posterior Probabilities of H0

The most well-known fallacy in interpreting significance tests is to equate the p-
value with a posterior probability on the null hypothesis. In legal settings this is
often called the prosecutor’s fallacy . Clearly, however:

(i) P (d(X) ≥ d(x0); H0) is not equal to (ii) P (H0 | d(X) ≥ d(x0)).

The p-value assessment in (i) refers only to the sampling distribution of the test
statistic d(X); and there is no use of prior probabilities, as would be necessitated
in (ii). In the frequentist context, {d(X) > 1.96} is an event and not a statistical
hypothesis. The latter must assign probabilities to outcomes of an experiment of
interest.

Could we not regard such events as types of hypotheses or at least predictions?
Sure. But scientific hypotheses of the sort statistical methods have been developed
to test are not like that. Moreover, no prior probabilities are involved in (i):
it is just the usual computation of probabilities of events “calculated under the
assumption” of a given statistical hypothesis and model. (It is not even correct
to regard this as a conditional probability.) We are prepared to go further: it
seems to us an odd way of talking to regard the null hypothesis as evidence for
the event {d(X) ≤ 1.96}, or for its high probability. It is simply to state what is
deductively entailed by the probability model and hypothesis. Most importantly,
the statistical hypotheses we wish to make inferences about are not events; trying
to construe them as such involves fallacies and inconsistencies (we return to this
in Section 3).

Some critics go so far as to argue that despite it being fallacious (to construe
error probabilities as posterior probabilities of hypotheses):

(#7) Error probabilities are invariably misinterpreted as
posterior probabilities.

Our discussion challenges this allegation that significance tests (and confidence
intervals) are invariably used in “bad-faith”. We have put forward a rival theory
as to the meaning and rationale for the use of these methods in science: properly
interpreted, they serve to control and provide assessments of the severity with
which hypotheses pass tests based on evidence. The quantitative aspects arise in
the form of degrees of severity and sizes of discrepancies detected or not. This
rival theory seems to offer a better explanation of inductive reasoning in science.
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2.6 Relevance for finite samples

Some critics charge that because of their reliance on frequentist probability:

(#8) Error statistical tests are justified only in cases
where there is a very long (if not infinite) series
of repetitions of the same experiment.

Ironically, while virtually all statistical accounts appeal to good asymptotic prop-
erties in their justifications, the major asset of error statistical methods is in being
able to give assurances that we will not be too far off with specifiable finite sam-
ples. This is a crucial basis both for planning tests and in critically evaluating
inferences post-data. Pre-data the power has an important role to play in en-
suring that test Tα has enough ‘capacity’, say (1−α), to detect a discrepancy of
interest γ for μ1=μ0+γ. To ensure the needed power one often has no other option
but to have a large enough sample size n. How large is ‘large enough’ is given by
solving the probabilistic equation:

to ensure: P (d(X) > cα;μ1)=(1−β), set: n={[(cα − cβ)σ]/γ}2,

where cβ is the threshold such that P (Z ≤ cβ)=β for Z �N(0, 1).
Numerical example. Consider test Tα with μ0=0, α=.025, σ=2, and let

the substantive discrepancy of interest be γ=.4. Applying the above formula one
can determine that the sample size needed to ensure high enough power, say
(1−β)=.90, to detect such a discrepancy is: n={[(1.96+1.28)(2)] /(.4)}2 ≈ 262,
i.e., the test needs 262 observations to have .9 power to detect discrepancies γ ≥ .4.

If the sample size needed for informative testing is not feasible, then there
are grounds for questioning the value of the inquiry, but not for questioning the
foundational principles of tests.

This points to a central advantage of the error statistical approach in avoiding
the limitations of those accounts whose reliability guarantees stem merely from
asymptotic results, that is for n going to infinity. In particular, a test is consistent
against some alternative μ1 when its power P (d(X) > cα;μ1) goes to one as n goes
to infinity. This result, however, is of no help in assessing, much less ensuring, the
reliability of the test in question for a given n.

Considering discrepancies of interest restricts the latitude for test specification,
not only in choosing sample sizes, but in selecting test statistics that permit error
probabilities to be ‘controlled’ despite unknowns. We now turn to this.

2.7 Dealing with “Nuisance” Parameters

In practice, a more realistic situation arises when, in the above simple Normal
model (M), both parameters, μ and σ2, are unknown. Since the primary inference
concerns μ and yet σ2 is needed to complete the distribution, it is often called a
“nuisance” parameter. Given the way nuisance parameters are handled in this
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approach, changes to the testing procedure are rather minor, and the reasoning is
unchanged. That is why we were able to keep to the simpler case for exposition.
To illustrate,

EXAMPLE 2. Test T ∗α, when σ2 is unknown.

First, the test statistic now takes the form: d∗(X)=
√

n(X−μ0)
s ,

where s2= 1
n−2

∑n
k=1(Xk −X)2 is the sample variance, that provides an unbiased

estimator of σ2.
Second, the sampling distributions of d∗(X), under both the null (H0) and the

alternative (H1) hypotheses, are no longer Normal, but Student’s t ; see [Lehmann,
1986]. What matters is that the distribution of d∗(X) under H0 does not involve
the nuisance parameter σ2; the only difference is that one needs to use the Stu-
dent’s t instead of the Normal tables to evaluate cα corresponding to a particular
α. The distribution of d∗(X) under H1 does involve σ2 but only through the non-

centrality parameter affecting the power: δ=
√

n(μ1−μ0)
σ . In practice one replaces

σ with its estimate s when evaluating the power of the test at μ1 — likewise for
severity. All the other elements of test Tα remain the same for T ∗α, including the
form of the test rule.

Ensuring error statistical calculations free of a nuisance parameter is essential
for attaining objectivity: the resulting inferences are not threatened by unknowns.
This important desideratum is typically overlooked in foundational discussions and
yet the error statistical way of satisfying it goes a long way toward answering the
common charge that:

(#9) Specifying statistical tests is too arbitrary.

In a wide class of problems, the error statistician attains freedom from a nuisance
parameter by conditioning on a sufficient statistic for it; see [Cox and Hinkley,
1974], leading to a uniquely appropriate test. This ingenious way of dealing with
nuisance parameters stands in contrast with Bayesian accounts that require prior
probability distributions for each unknown quantity. (Nuisance parameters also
pose serious problems for pure likelihood accounts; see [Cox, 2006]). Once this is
coupled with the requirement that the test statistics provide plausible measures of
“agreement”, the uniquely appropriate test is typically overdetermined: one can
take one’s pick for the rationale (appealing to Fisherian, Neyman-Pearsonian, or
severity principles).

2.8 Severe Testing and Confidence Interval (CI) Estimation

In CI estimation procedures, a statistic is used to set upper or lower (1-sided) or
both (2-sided) bounds. For a parameter, say μ, a (1−α) CI estimation procedure
leads to estimates of form: μ = x ± e. Critics of significance tests often allege:

(#10) We should be doing confidence interval estimation
rather than significance tests.
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Although critics of significance tests often favor CI’s, it is important to realize
that CI’s are still squarely within the error statistical paradigm. In fact there is
a precise duality relationship between (1−α) CI’s and significance tests: the CI
contains the parameter values that would not be rejected by the given test at the
specified level of significance [Neyman, 1935]. It follows that the (1−α) one sided
interval corresponding to test Tα is:

μ > X − cα(σ/
√

n).

In particular, the 97.5% CI estimator corresponding to test Tα is:

μ > X−1.96(σ/
√

n).

Now it is true that the confidence interval gives a data-dependent result, but so
does our post-data interpretation of tests based on severity. Moreover, confidence
intervals have their own misinterpretations and shortcomings that we need to get
around.

A well known fallacy is to construe (1−α) as the degree of probability to be
assigned the particular interval estimate formed, once X is instantiated with x.
Once the estimate is formed, either the parameter is or is not contained in it. One
can say only that the particular estimate arose from a procedure which, with high
probability, (1−α), would contain the true value of the parameter, whatever it is.
This affords an analogous “behavioristic” rationale for confidence intervals as we
saw with tests: Different sample realizations x lead to different estimates, but one
can ensure that (1−α)100% of the time the true parameter value μ, whatever it
may be, will be included in the interval formed. Just as we replace the behavioristic
rationale of tests with the inferential one based on severity, we do the same with
confidence intervals.

The assertion μ > x − cα(σ/
√

n) is the one-sided (1−α) interval corresponding
to the test Tα and indeed, for the particular value μ1 = x−cα(σ/

√
n), the severity

with which the inference μ > μ1 passes test Tα is (1−α). The severity rationale
for applying the rule and inferring μ > x − cα(σ/

√
n) might go as follows:

Suppose this assertion is false, e.g., suppose μ1 = x−1.96(σ/
√

n). Then the
observed mean is 1.96 standard deviations in excess of μ1. Were μ1 the mean of
the mechanism generating the observed mean, then with high probability (.975)
a result less discordant from μ1 would have occurred. (For even smaller values of
μ1 this probability is increased.)

However, our severity construal also demands breaking out of the limitations
of confidence interval estimation. In particular, in the theory of confidence inter-
vals, a single confidence level is prespecified and the one interval estimate corre-
sponding to this level is formed as the inferential report. The resulting interval
is sometimes used to perform statistical tests: Hypothesized values of the param-
eter are accepted (or rejected) according to whether they are contained within
(or outside) the resulting interval estimate. The same problems with automatic
uses of tests with a single prespecified choice of significance level α reappear in
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the corresponding confidence interval treatment. Notably, predesignating a single
choice of confidence level, (1−α), is not enough.

Here is why: A (1−α) CI corresponds to the set of null hypotheses that an
observed outcome would not be able to reject with the corresponding α-level test.
In our illustrative example of tests, the null value is fixed (we chose 0), and then
the sample mean is observed. But we could start with the observed sample mean,
and consider the values of μ that would not be rejected, were they (rather than
0) the null value. This would yield the corresponding CI. That is, the observed
mean is not sufficiently greater than any of the values in the CI to reject them at
the α-level. But as we saw in discussing severity for insignificant results, this does
not imply that there is good evidence for each of the values in the interval: many
values in the interval pass test Tα with very low severity with x0. Yet a report
of the CI estimate is tantamount to treating each of the values of the parameter
in the CI on a par, as it were. That some values are well, and others poorly,
warranted is not expressed. By contrast, for each value of μ in the CI, there would
be a different answer to the question: How severely does μ > μ1 pass with x0? The
severity analysis, therefore, naturally leads to a sequence of inferences, or series of
CIs, that are and are not warranted at different severity levels7.

3 ERROR STATISTICS VS. THE LIKELIHOOD PRINCIPLE

A cluster of debates surrounding error statistical methods, both in philosophy
and in statistical practice, reflects contrasting answers to the question: what in-
formation is relevant for evidence and inference? Answers, in turn, depend on
assumptions about the nature of inductive inference and the roles of probabilistic
concepts in inductive inference. We now turn to this.

Consider a conception of evidence based just on likelihoods: data x0 is evidence
for H so long as:

(a) P (x0;H) = high (or maximal)

(b) P (x0;H is false) = low.

Although at first blush these may look like the two conditions for severity ((S-
1) and (S-2)), conditions (a) and (b) together are tantamount to a much weaker
requirement: x0 is evidence for H so long as H is more likely on data x0 than on
the denial of H — referring to the mathematical notion of likelihood. To see that
this is scarcely sufficient for severity, consider a familiar example.

7A discussion of various attempts to consider a series of CI’s at different levels, confidence
curves [Birnbaum, 1961], p-value functions [Poole, 1987], consonance intervals [Kempthorne and
Folks, 1971] and their relation to the severity evaluation is beyond the scope of this paper; see
[Mayo and Cox, 2006].



184 Deborah G. Mayo and Aris Spanos

Maximally Likely alternatives. H0 might be that a coin is fair, and x0 the
result of n flips of the coin. For each of the 2n possible outcomes there is a
hypothesis H∗

i that makes the data xi maximally likely. For an extreme case,
H∗

i can assert that the probability of heads is 1 just on those tosses that yield
heads, 0 otherwise. For any xi, P (xi; H0) is very low and P (xi;H

∗
i ) is high

— one need only choose for (a) the statistical hypothesis that renders the data
maximally likely, i.e., H∗

i . So the fair coin hypothesis is always rejected in favor
of H∗

i , even when the coin is fair. This violates the severity requirement since it
is guaranteed to infer evidence of discrepancy from the null hypothesis even if it
is true. The severity of ‘passing’ H∗

i is minimal or 0. (Analogous examples are
the “point hypotheses” in [Cox and Hinkley, 1974, p. 51], Hacking’s [1965] “tram
car” example, examples in [Mayo, 1996; 2008].)

This takes us to the key difference between the error statistical perspective
and contrasting statistical philosophies; namely that to evaluate and control error
probabilities requires going beyond relative likelihoods.

3.1 There is Often Confusion About Likelihoods

The distribution of the sample X assigns probability (or density) to each possible
realization x, under some fixed value of the parameter θ, i.e. f(x; θ). In contrast,
the likelihood assigns probability (or density) to a particular realization x, under
different values of the unknown parameter θ. Since the data x are fixed at x0

and the parameter varies, the likelihood is defined as proportional to f(x; θ) but
viewed as a function of the parameter θ:

L(θ;x0) ∝ f(x0; θ) for all θ ∈ Θ.

Likelihoods do not obey the probability axioms, for example, the sum of the like-
lihoods of a hypothesis and its denial is not one.

Hacking [1965] is known for having championed an account of comparative sup-
port based on what he called the “law of likelihood”: data x0 support hypothesis
H1 less than H2 if the latter is more likely than the former, i.e., P (x0;H2) >
P (x0;H1); when H2 is composite, one takes the maximum of the likelihood over
the different values of θ admitted by H2. From a theory of support Hacking gets
his theory of testing whereby, “an hypothesis should be rejected if and only if there
is some rival hypothesis much better supported than it is. . . ” [Hacking, 1965, p.
89].

Hacking [1980] distanced himself from this account because examples such as the
one above illustrate that “there always is such a rival hypothesis, viz. that things
just had to turn out the way they actually did” [Barnard, 1972, p. 129]. Few
philosophers or statisticians still advocate a pure likelihood account of evidence
(exceptions might be [Rosenkrantz, 1977; Sober, 2008], among philosophers, and
[Royall, 1997] among statisticians). However, many who would deny that relative
likelihoods are all that is needed for inference still regard likelihoods as all that
is needed to capture the import of the data. For example, a Bayesian may hold
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that inference requires likelihoods plus prior probabilities while still maintaining
that the evidential import of the data is exhausted by the likelihoods. This is
the gist of a general principle of evidence known as the Likelihood Principle (LP).
Disagreement about the LP is a pivot point around which much of the philosophical
debate between error statisticians and Bayesians has long turned. Holding the LP
runs counter to distinguishing data on grounds of error probabilities of procedures.8

“According to Bayes’s theorem, P (x|μ)...constitutes the entire evidence
of the experiment, that is, it tells all that the experiment has to tell.
More fully and more precisely, if y is the datum of some other ex-
periment, and if it happens that P (x|μ) and P (y|μ)are proportional
functions of μ (that is, constant multiples of each other), then each
of the two data x and y have exactly the same thing to say about the
values of μ. . . ”. [Savage, 1962, p. 17]

The italicized portion defines the LP. If a methodology allows data to enter
only through the likelihoods, then clearly likelihoods contain all the import of
the data — for that methodology. The philosophical question is whether relevant
information is not thereby being overlooked. The holder of the LP considers the
likelihood of the actual outcome, i.e., just d(x0), whereas the error statistician
needs to consider, in addition, the sampling distribution of d(X) or other statistic
being used in inference. In other words, an error statistician could use likelihoods
in arriving at (S-1) the condition of accordance or fit with the data, but (S-2)
additionally requires considering the probability of outcomes x that accord less
well with a hypotheses of interest H, were H false. In the error statistical account,
drawing valid inferences from the data x0 that happened to be observed is crucially
dependent on the relative frequency of outcomes other than the one observed, as
given by the appropriate sampling distribution of the test statistic.

3.2 Paradox of Optional Stopping

The conflict we are after is often illustrated by a two-sided version of our test T .
We have a random sample from a Normal distribution with mean μ and standard
deviation 1, i.e.,

Xk � N(μ, 1), k = 1, 2, ..., n,

and wish to test the hypotheses:

H0: μ = 0, vs. H1: μ 	= 0.

To ensure an overall significance level of .05, one rejects the null whenever |x| >
(1.96/

√
n). However, instead of fixing the sample size in advance, we are to let n

8A weaker variation on the LP holds that likelihoods contain all the information within a
given experiment, whereas the “strong” LP refers to distinct experiments. Here LP will always
allude to the strong likelihood principle.
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be determined by a stopping rule:

keep sampling until |x| > (1.96/
√

n).

The probability that this rule will stop in a finite number of trials is 1, regardless
of the true value of μ; it is a proper stopping rule. Whereas with n fixed in advance,
such a test has a type 1 error probability of .05, with this stopping rule the test
would lead to an actual significance level that would differ from, and be greater
than .05. This is captured by saying that significance levels are sensitive to the
stopping rule; and there is considerable literature as to how to adjust the error
probabilities in the case of ‘optional stopping’, also called sequential tests [e.g.,
Armitage, 1975]. By contrast, since likelihoods are unaffected by this stopping
rule, the proponent of the LP denies there really is an evidential difference between
the cases where n is fixed and where n is determined by the stopping rule9. To
someone who holds a statistical methodology that satisfies the LP, it appears that:

(#11) Error statistical methods take into account the in-
tentions of the scientists analyzing the data.

In particular, the inference depends on whether or not the scientist intended to
stop at n or intended to keep going until a statistically significant differnce from
the null was found. The charge in #11 would seem to beg the question against
the error statistical methodology which has perfectly objective ways to pick up on
the effect of stopping rules: far from intentions “locked up in the scientist’s head”
(as critics allege), the manner of generating the data alter error probabilities, and
hence severity assessments. As is famously remarked in [Edwards et al., 1963]:
“The likelihood principle emphasized in Bayesian statistics implies, . . . that the
rules governing when data collection stops are irrelevant to data interpretation.
This irrelevance of stopping rules to statistical inference restores a simplicity and
freedom to experimental design that had been lost by classical emphasis on sig-
nificance levels — in the sense of [Neyman and Pearson, 1933, p. 239]. While it
may restore “simplicity and freedom” it does so at the cost of being unable to ad-
equately control error probabilities [Berger and Wolpert, 1988; Cox and Hinkley,
1974; Kadane et al., 1999; Mayo and Kruse, 2001; Cox and Mayo, 2010].

3.3 The Reference Bayesians and the Renunciation of the LP

All error probabilistic notions are based on the sampling distribution of a statis-
tic, and thus for an error statistician reasoning from data x0 always depends on
considering how a procedure would handle outcomes other than x0; it is necessary
to consider how often the result would occur in hypothetical repetitions. This
conflicts with the likelihood principle (LP). Therefore, objectivity for the error

9Birnbaum [1962] argued that the LP follows from apparently plausible principles of condi-
tionality and sufficiency. A considerable literature exists, see [Barnett, 1999]. Mayo [2010b] has
recently argued that this ”proof” is fallacious.
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statistician entails violating the LP — long held as the core of Bayesianism [Mayo,
1983; 1985; 1996].

In fact Bayesians have long argued for foundational superiority over frequentist
error statisticians on grounds that they uphold, while frequentists violate, the like-
lihood principle (LP), leading the latter into Bayesian incoherency. Frequentists
have long responded that having a good chance of getting close to the truth and
avoiding error is what matters [Cox and Hinkley, 1974]. However, many Bayesian
statisticians these days, seem to favor the use of conventionally chosen or “refer-
ence” Bayesian priors, both because of the difficulty of eliciting subjective priors,
and the reluctance of many scientists to allow subjective beliefs to overshadow the
information provided by data. These reference priors however, violate the LP.

Over the past few years, leading developers of reference Bayesian methods
[Bernardo, 2005; Berger, 2004] concede that desirable reference priors force them
to consider the statistical model leading to violations of basic principles, such as
the likelihood principle and the stopping rule principle; see [Berger and Wolpert,
1988]. Remarkably, they are now ready to admit that “violation of principles such
as the likelihood principle is the price that has to be paid for objectivity” [Berger,
2004]. Now that the reference-Bayesian concedes that violating the LP is neces-
sary for objectivity there may seem to be an odd sort of agreement between the
reference Bayesian and the error statistician.

Do the concessions of reference Bayesians bring them closer to the error statis-
tical philosophy? To even consider this possibility one would need to deal with a
crucial point of conflict as to the basic role of probability in induction. Although
Bayesians disagree among themselves about both the interpretation of posterior
probabilities, and their numerical values, they concur that:

“what you ‘really’ want are posterior probabilities for different hypotheses.”

It is well known that error probabilities differ from posteriors. In a variation on
the charge of misinterpretation in (#6), critics seek examples where:

“p-values conflict with Bayesian posteriors,”

leading to results apparently counterintuitive even from the frequentist perspec-
tive. We consider the classic example from statistics.

(Two-sided) Test of a Mean of a Normal Distribution

The conflict between p-values and Bayesian posteriors often considers the familiar
example of the two sided T2α test for the hypotheses:

H0:μ = 0, vs. H1:μ 	= 0.

The difference between p-values and posteriors are far less marked with one-sided
tests , e.g., [Pratt, 1977; Cassella and Berger, 1987]. Critics observe:
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“If n = 50 one can classically ‘reject H0 at significance level p =
.05,’ although P (H0|x) = .52 (which would actually indicate that the
evidence favors H0).” ([Berger and Sellke, 1987, p. 113], we replace
Pr with P for consistency.)

Starting with a high enough prior probability to the point null (or, more cor-
rectly, to a small region around it), they show that an α significant difference can
correspond to a posterior probability in H0 that is not small. Where Bayesians
take this as problematic for significance testers, the significance testers balk at
the fact that use of the recommended priors can result in highly significant results
being construed as no evidence against the null — or even “that the evidence
favors H0.” If n=1000, a result statistically significant at the .05 level leads to a
posterior to the null of .82! [Berger and Sellke, 1987]. Here, statistically significant
results — results that we would regard as passing the non-null hypothesis severely
— correspond to an increase in probability from the prior (.5) to the posterior.

What justifies this prior? The Bayesian prior probability assignment of .5 to
H0, the remaining .5 probability being spread out over the alternative parameter
space, (e.g., recommended by Jeffreys [1939]) is claimed to offer an “objective”
assessment of priors: the priors are to be read off from a catalogue of favored “ref-
erence” priors, no subjective beliefs are to enter. It is not clear how this negative
notion of objectivity secures the assurance we would want of being somewhere close
to the truth. The Bayesians do not want too small a prior for the null since then
evidence against the null is merely to announce that an improbable hypothesis has
become more improbable. Yet the spiked concentration of belief (“weight”) in the
null is at odds with the prevailing use of null hypotheses as simply a standard from
which one seeks discrepancies. Finally, these examples where p-values differ from
posteriors create a tension between the posterior probability in a testing context
and the corresponding (highest probability) Bayesian confidence interval: the low
posterior indicates scarce evidence against the null even though the null value is
outside the corresponding Bayesian confidence interval [Mayo, 2005].

Some examples strive to keep within the frequentist camp: to construe a hy-
pothesis as a random variable, it is imagined that we sample randomly from a
population of hypotheses, some proportion of which are assumed to be true. The
percentage “initially true” serves as the prior probability for H0. This gambit
commits what for a frequentist would be a fallacious instantiation of probabilities:

50% of the null hypotheses in a given pool of nulls are true.

This particular null hypothesis H0 was randomly selected from this
pool.

Therefore P (H0 is true) = .5.

Even allowing that the probability of a randomly selected hypothesis taken
from an “urn” of hypotheses, 50% of which are true, is .5, it does not follow that
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this particular hypothesis, the one we happened to select, has a probability of
.5, however probability is construed [Mayo, 1997; 2005; 2010b].10 Besides, it is
far from clear which urn of null hypotheses we are to sample from. The answer
will greatly alter whether or not there is evidence. Finally, it is unlikely that we
would ever know the proportion of true nulls, rather than merely the proportion
that have thus far not been rejected by other statistical tests! Whether the priors
come from frequencies or from “objective” Bayesian priors, there are claims that
we would want to say had passed severely that do not get a high posterior.

These brief remarks put the spotlight on the foundations of current-day refer-
ence Bayesians — arguably the predominant form of Bayesianism advocated for
science. They are sometimes put forward as a kind of half-way house offering a
“reconciliation” between Bayesian and frequentist accounts. Granted, there are
cases where it is possible to identify priors that result in posteriors that “match”
error probabilities, but they appear to mean different things. Impersonal or ref-
erence priors are not be seen as measuring beliefs or even probabilities — they
are often improper.11 Subjective Bayesians often quesiton whether the reference
Bayesian is not here giving up on the central Bayesian tenets (e.g., [Dawid, 1997;
Lindley, 1997]).

4 ERROR STATISTICS IS SELF-CORRECTING: TESTING STATISTICAL
MODEL ASSUMPTIONS

The severity assessment of the primary statistical inference depends on the assump-
tions of the statistical model M being approximately true. Indeed, all model-based
statistical methods depend, for their validity, on satisfying the model assumptions,
at least approximately; a crucial part of the objectivity of error statistical methods
is their ability to be used for this self-correcting goal.

Some critics would dismiss the whole endeavor of checking model assumptions
on the grounds that:

#12 All models are false anyway.

This charge overlooks the key function in using statistical models, as argued by
Cox [1995, p. 456]:

“... it does not seem helpful just to say that all models are wrong.
The very word model implies simplification and idealization. ... The
construction of idealized representations that capture important stable

10The parallel issue is raised by Bayesian epistemologists; see [Achinstein, 2010; Mayo, 2005;
2010c, 2010d].

11Interestingly, some frequentist error statisticians are prepared to allow that reference
Bayesian techniques might be regarded as technical devices for arriving at procedures that may
be reinterpreted and used by error statisticians, but for different ends (see [Cox, 2006; Cox and
Mayo, 2009; Kass and Wasserman, 1996]).
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aspects of such systems is, however, a vital part of general scientific
analysis.”

In order to obtain reliable knowledge of “important stable aspects” of phe-
nomena, tests framed within approximately correct models will do — so long as
their relevant error probabilities are close to those calculated. Statistical mis-
specifications often create sizeable deviations between the calculated or nominal
error probabilities and the actual error probabilities associated with an inference,
thereby vitiating error statistical inferences. Since even Bayesian results depend
on approximate validity of their statistical models, this might be an area for the
Bayesian to employ non-Bayesian methods.

The error statistician pursues testing assumptions using three different types of
tools: informal analyses of data plots, non-parametric and parametric tests, and
simulation-based methods, including resampling.

Philosophers of science tend to speak of “the data” in a way that does not
distinguish the different ways in which a given set of data are modeled, and yet
such distinctions are crucial for understanding how reliable tests of assumptions
are obtained. In using data to test model assumptions one looks, not at the
reduced data in the test statistic (for primary testing), but rather the full data
set x0:=(x1, x2, . . . , xn). For example, in test Tα, X= 1

n

∑n
k=1 Xk is a sufficient

statistic for parameter μ. That means X, together with its sampling distribution,
contains all the information needed for those inferences. However, X, by itself, does
not provide sufficient information to assess the validity of the model assumptions
underlying test Tα above. There are actually four distinct assumptions (table 1).

Table 1 - Simple Normal Model

Xk = μ + uk, k∈N,
[1] Normality: Xk � N(., .),
[2] constant mean: E(Xk):= μ,
[3] constant variance: V ar(Xk):= σ2,

⎫⎬
⎭ k∈N.

[4] Independence: {Xk, k∈N} is an independent process.

The inferences about μ depend on the assumptions, but the tests of those assump-
tions should not depend on the unknowns. The idea underlying model validation
is to construct Mis-Specification (M-S) tests using ‘distance’ functions whose dis-
tribution under the null (the model is valid) is known, and at the same time they
have power against potential departures from the model assumptions. M-S tests
can be regarded as posing ‘secondary’ questions to the data as opposed to the
primary ones. Whereas primary statistical inferences take place within a specified
(or assumed) model M, the secondary inference has to put M’s assumptions to
the test; so to test M’s assumptions, we stand outside M, as it were. The generic
form of the hypothesis of interest in M-S tests is:

H0: the assumption(s) of statistical model M hold for data x0,
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as against the alternative not-H0, which, in general, consists of all of the ways
one or more of M’s assumptions can founder. However, this alternative [P −M],
where P denotes the set of all possible models that could have given rise to data
x0, is too unwieldy. In practice one needs to consider a specific form of departure
from H0, say Hr, in order to apply a statistical significance test to H0 and test
results must be interpreted accordingly. Since with this restricted alternative Hr,
the null and alternative do not exhaust the possibilities (unlike in the N-P test),
a statistically significant departure from the null would not warrant inferring the
particular alternative in a M-S test Hr, at least not without further testing; see
[Spanos, 2000].

In M-S testing, the logic of significance tests is this: We identify a test statistic
τ(X) to measure the distance between what is observed x0 and what is expected
assuming the null hypothesis H0 holds, so as to derive the distribution of τ(X)
under H0. Now the relevant p-value would be:

P (τ(X) > τ(x0); H0 true) = p,

and if it is very small, then there is evidence of violations of the assumption(s) in
H0. We leave to one side here the particular levels counting as ‘small’. A central
asset of the error statistical approach to model validation, is its ability to compute
the p-value, and other relevant error probabilities, now dealing with erroneous
inferences regarding the assumptions.

Although the alternative may not be explicit in this simple (Fisherian) test, the
interest in determining what violations have been ruled out with severity leads one
to make them explicit. This may be done by considering the particular violations
from H0 that the given test is capable of probing. This goes beyond what, strictly
speaking, is found in standard M-S tests; so once again the severity requirement is
directing supplements. The upshot for interpreting M-S test results is this: If the
p-value is not small, we are entitled only to rule out those departures that the test
had enough capacity to detect. In practice, the alternatives may be left vague or
made specific. We consider an example of each, the former with a non-parametric
test, the latter with a parametric test.

4.1 Runs Test for IID

An example of a non-parametric M-S test for IID (assumptions [2]–[4]) is the
well-known runs test. The basic idea is that if the sample X:=(X1, X2, . . . , Xn)
is random (IID), then one can compare the number of runs expected E(R) in a
typical realization of an IID sample with the number of runs observed R = r,
giving rise to a test statistic:

τ(X) =
∣∣∣[R−E(R)]/

√
V ar(R)

∣∣∣ ,

whose distribution under IID for n ≥ 20 can be approximated by N(0, 1). The
number of runs R is evaluated in terms the residuals:

ûk = (Xk − X), k = 1, 2, ..., n,
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where instead of the particular value of each observed residual one records its sign,
a “+”, or negative, a “−”, giving rise to patterns of the form:

++︸︷︷︸
1

−︸︷︷︸
2

++︸︷︷︸
3

−︸︷︷︸
4

+ + +︸ ︷︷ ︸
5

−︸︷︷︸
6

+︸︷︷︸
7

−︸︷︷︸
8

+︸︷︷︸
9

−−︸︷︷︸
10

+ + + + +︸ ︷︷ ︸
11

−︸︷︷︸
12

· · ·

The patterns we are interested in are called runs: a sub-sequence of one type
(pluses only or minuses only) immediately preceded and succeeded by an element
of the other type.

The appeal of such a non-parametric test is that its own validity does not de-
pend on the assumptions of the (primary) model under scrutiny: we can calculate
the probability of different numbers of runs just from the hypothesis that the as-
sumption of randomness holds. As is plausible, then, the test based on R takes
the form: Reject H0 iff the observed R differs sufficiently (in either direction) from
E(R) — the expected R under the assumption of IID. The p-value is:

P (τ(X) > τ(x0); IID true)= p.

However, since the test is sensitive to any form of departures from the IID assump-
tions, rejecting the null only warrants inferring a denial of IID. The test itself does
not indicate whether the fault lies with one or the other or both assumptions.
Combining this test with other misspecification analyses, however, can; [Mayo
and Spanos, 2004].

4.2 A Parameteric Test of Independence

Let us now compare this to a parametric M-S test. We begin by finding a way to
formally express the denial of the assumption in question by means of a parameter
value in an encompassing model. In particular, the dependence among the Xk’s
may be formally expressed as an assertion that the correlation between any Xi

and Xj for i 	= j is non-zero, which in turn may be parameterized by the following
AutoRegressive (AR(1)) model:

Xk = β0 + β1Xk−1 + εt, k = 1, 2, ..., n.

In the context of this encompassing model the independence assumption in [4] can
be tested using the parametric hypotheses:

H0 : β1 = 0, vs. H1 : β1 	= 0.

Notice that under H0 the AR(1) model reduces to Xk = μ + ut; see table 1.
Rejection of the null based on a small enough p-value provides evidence for a
violation of independence. Failing to reject entitles us to claim that the departures
against which the test was capable of detecting are not present; see [Spanos, 1999]
for further discussion.
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4.3 Testing Model Assumptions Severely

In practice one wants to perform a variety of M-S tests assessing different subsets
of assumptions [1]–[4]; using tests which themselves rely on dissimilar assumptions.
The secret lies in shrewd testing strategies: following a logical order of parametric
and non-parametric tests, and combining tests that jointly probe several violations
with deliberately varied assumptions. This enables one to argue, with severity, that
when no departures from the model assumptions are detected, despite all of these
distinct probes, the model is adequate for the primary inferences. The argument
is entirely analogous to the argument from coincidence that let us rule out values
of George’s weight gain earlier on.

To render the probing more effective, error statisticians employ data analytic
techniques and data plots to get hints of the presence of potential violations,
indicating the most fruitful analytic tests to try. In relation to this some critics
charge:

#13 Testing assumptions involves illicit data-mining.

The truth of the matter is that data plots provide the best source of information
pertaining to potential violations that can be used to guide a more informative
and effective probing. Far from being illicit data mining, it is a powerful way to
get ideas concerning the type of M-S tests to apply to check assumptions most
severely. It provides an effective way to probe what is responsible for the observed
pattern, much as a forensic clue is used to pinpoint the culprit; see [Spanos, 2000].
The same logic is at the heart of non-parametric tests of assumptions, such as the
runs test.

4.4 Residuals provide the Key to M-S testing

A key difference between testing the primary hypotheses of interest and M-S test-
ing is that they pose very different questions to data in a way that renders the the
tests largely independent of each other. This can be justified on formal grounds
using the properties of sufficiency and ancillarity ; see [Cox and Hinkley, 1974].

It can be shown [Spanos, 2007] that, in many cases, including the above example
of the simple Normal model, the information used for M-S testing purposes is
independent of the information used in drawing primary inferences. In particular,
the distribution of the sample for the statistical model in question simplifies as
follows:

(3) f(y; θ) ∝ f(s; θ) · f(r), ∀ (s, r)∈R
m
s ×R

n−m
r .

where the statistics R and S, are not only independent, but S is a sufficient
statistic for θ:=(μ, σ2) (the unknown parameters of the statistical model) and R
is ancillary for θ, i.e. f(r) does not depend on θ. Due to these properties, the
primary inference about θ can be based solely on the distribution of the sufficient
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statistic f(s; θ), and f(r) can be used to assess the validity of the statistical model
in question.

In the case of the simple Normal model (table 1), the statistics R and S take
the form:

S:=(X, s), where X= 1
n

∑n
k=1 Xk, s2 = 1

n−1

∑n
k=1(Xk − X)2,

R:=(v̂3, .., v̂n), v̂k =
√

nbuk

s =
√

n(Xk−X)
s � St(n−1), k = 3, 4, .., n,

where (v̂1, .., v̂n) are known as studentized residuals; see [Spanos, 2007]. Note that
the runs test, discussed above, relies on residuals because it is based on replacing
their numerical values with their sign (+ or −). Likewise, the parametric M-S test
for independence, placed in the context of the AR(1) model, can be shown to be
equivalently based on the auxiliary autoregression in terms of the residuals:

ûk = β0 + β1ûk−1 + εt, k=1, 2, ..., n.

The above use of the residuals for model validation is in the spirit of the strategy
in [Cox and Hinkley, 1974] to use the conditional distribution f(x | s) to assess the
adequacy of the statistical model. What makes f(x | s) appropriate for assessing
model adequacy is that when s is a sufficient statistic for θ, f(x | s) is free of the
unknown parameter(s). The simple Poisson and Bernoulli models provide such
examples [Cox, 2006, p. 33].

4.5 Further Topics, Same Logic

If one finds violations of the model assumptions then the model may need to be
respecified to capture the information not accounted for, but the general discussion
of respecification is beyond the scope of this entry; see [Spanos, 2006].

A distinct program of research for the error statistician is to explore the extent
to which violations invalidate tests. Thanks to robustness, certain violations of the
model assumptions will not ruin the validity of the test concerning the primary
hypothesis.

Of particular interest in error statistics is a set of computer-intensive techniques
known as resampling procedures, including permutation methods, the bootstrap
and Monte Carlo simulations, which are based on empirical relative frequencies.
Even without knowing the sampling distribution, one can, in effect generate it by
means of these techniques. The logic underlying the generation of these simulated
realizations is based on counterfactual reasoning: We ask, ‘what would it be like (in
terms of sampling distributions of interest) were we to sample from one or another
assumed generating mechanism?’ The results can then be used to empirically
construct (by “brute force” some claim) the sampling distributions of any statistic
of interest and their corresponding error probabilities.

This is particularly useful in cases where the sampling distribution of an estima-
tor or a test statistic cannot be derived analytically, and these resampling methods
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can be used to evaluate it empirically; see [Efron and Tibshirani, 1993]. The same
pattern of counterfactual reasoning around which severity always turns is involved,
thus unifying the methods under the error statistical umbrella. Here, however, the
original data are compared with simulated replicas generated under a number of
different data generating mechanisms, in order to discern the discrepancy between
what was observed and “what it would be like” under various scenarios. It should
be noted that model specification is distinct from model selection, which amounts
to choosing a particular model within a prespecified family of models; see [Spanos,
2010].
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