6.3 graphing using intercepts worksheet

MPM1D

Jensen

1. Identify the x- and y-intercepts of each graph, if they exist.

a)

b)

c)

x-intercept:

y-intercept:

x-intercept:

y-intercept:

x-intercept:

y-intercept:

d)

e)

x-intercept:

y-intercept:

x-intercept:

y-intercept:

2. For each part, plot the intercepts and graph the line

a)		
aı	_	•
	3	п
	ш	,

d)

a)

3. Determine the x- and y-intercepts and use them to graph the line

a)
$$2x + 3y = 12$$

b)
$$3x + y = 6$$

c)
$$x - 4y = 4$$

x-intercept:_____

x-intercept:______y-intercept:_____

x-intercept:_____

d)
$$-5x + 2y = 10$$

e)
$$4x = 12$$

g)
$$4x + 2y = 6$$

x-intercept:___ y-intercept:__

x-intercept:___

y-intercept:_

x-intercept:_____ y-intercept:_

4. Draw a graph and determine the slope of each line using the rise and run from the graph.

	_	٠
ı	а	ľ
ı		ı

١
П
u

	-	ľ
-1	п	ı

	x-intercept	y-intercept
	5	-5
)	-2	3
	3	none
)	2.5	-4

a)

5. Find the slope of each line using the slope formula

x-intercept	<i>y</i> -intercept
6	5
3	-4
-6	3
none	<u>1</u> 2

a)

b)

c)

d)

Slope: _____

Slope: _____

Slope: _____

Slope: _____

6. The distance time graph shows Carlo's motion in front of a sensor.

a) Identify the d-intercept and explain what it means $% \left(\mathbf{r}\right) =\left(\mathbf{r}\right)$

b) Identify the t-intercept and explain what it means

 $c) \ Describe \ the \ instructions \ you \ would \ give \ someone \ walking \ in \ front \ of \ a \ sensor \ to \ reproduce \ this \ graph$

7. Consider the line x + 4y = -4. To graph this line, you could:

- determine the *x* and *y*-intercepts
- create a table of values
- use the equation to find the coordinates of three points on the line

Which method of graphing do you prefer in this case? Explain.

- 8. A candle burns at a constant rate of 2.5 cm/h. The candle is 15 cm tall when it is first lit.
- a) Set up a graph of length, l, in centimeters, versus time, t, in hours, and plot the l-intercept.

- b) Should the slope of this linear relation be positive or negative? Explain.
- c) Graph the line
- d) What is the length of the candle after 3 hours? 4.5 hours?
- e) Identify the t-intercept and explain what it means.
- f) Explain why this graph has no meaning below the t-intercept
- 11. When you buy a computer, its value depreciates (becomes less) over time. The graph illustrates the value of a computer from the time it was bought.
- a) How much did the computer originally cost?
- b) After what period of time does the computer no longer have value?
- c) What is the slope and what does it mean?

