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Goodness of Fit in Logistic Regression

As in linear regression, goodness of fit in logistic regression attempts to get at how
well a model fits the data. It is usually applied after a “final model” has been selected.

As we have seen, often in selecting a model no single “final model” is selected, as a
series of models are fit, each contributing towards final inferences and conclusions.
In that case, one may wish to see how well more than one model fits, although it
is common to just check the fit of one model. This is not necessarily bad practice,
because if there are a series of “good” models being fit, often the fit from each will
be similar.

Recall once again the quote from George Box:

“All Models are wrong, but some are useful.”

It is not clear how to judge the fit of a model that we know is in fact wrong. Much
of the goodness of fit literature is based on hypothesis testing of the following type:

H0 : model is exactly correct

HA : model is not exactly correct

This type of testing provides no useful information. If the null hypothesis is rejected,
then we have learned nothing, because we already knew that it is impossible for any
model to be “exactly correct”.

On the other hand, if we do not reject the model, it is almost surely because of a lack
of statistical power, and as the sample size grows larger, we will eventually surely
reject H0.

These tests can be seen not only as not useful, but as harmful if non-rejection of a null
hypothesis is misinterpreted as proof that the model “fits well”, which is of course
can be far from the truth.

If these tests are not useful (despite their popularity in some circles), what else can
we do?

We can attempt to derive various descriptive measures of how well a model fits,
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and then try to make a judgement concerning whether any discrepancies we see will
likely affect our use of the model for its intended purpose (e.g., predictions for future
subjects, or the association between any particular independent variable and the
outcome).

The above is a difficult task, no perfect solutions exist, and much methodological
research is still ongoing in this area.

We will look at some solutions that have been proposed, and see some examples of
their use.

Goodness Of Fit Measures for Logistic Regression

The following measures of fit are available, sometimes divided into “global” and “lo-
cal” measures:

• Chi-square goodness of fit tests and deviance

• Hosmer-Lemeshow tests

• Classification tables

• ROC curves

• Logistic regression R2

• Model validation via an outside data set or by splitting a data set

For each of the above, we will define the concept, see an example, and discuss the
advantages and disadvantages of each.

Chi-Square Goodness Of Fit Tests and Deviance

In linear regression, residuals can be defined as

yi − ŷi

where yi is the observed dependent variable for the ith subject, and ŷi the correspond-
ing prediction from the model.
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The same concept applies to logistic regression, where yi is necessarily equal to either
1 or 0, and

ŷi = π̂i(xi) =
exp(α + β1xi1 + . . .+ βpxip)

1 + exp(α + β1xi1 + . . .+ βpxip)

Two tests can be based on these residuals:

Chi-square test: Define a standardized residual as (recall the standard deviation of
the binomial distribution to be p(1 − p) ):

ri =
yi − ŷi√
ŷi(1 − ŷi)

One can then form a χ2 statistic as

X2 =
n∑

i=1

r2i

The X2 statistic follows a χ2 distribution with n− (p + 1) degrees of freedom,
so that p-values can be calculated (if desired, see above note about such tests).

Note how similar this is to the situation for linear regression χ2 tests.

Technical Point: If some “covariate patterns” are repeated more than once, so that
there are J < n patterns, then the above test statistic changes to a sum over J
rather than over n, and yi changes to the number of successes over all individuals
with that pattern. The term ŷi remains the same, as it is the same across
individuals with the same covariate pattern anyway.

Second Technical Point: The χ2 distribution is not very accurate when J ≈ n, so
tests not very accurate. One way around this is to group “similar” covariate
patterns together, so that J < n.

This is not a big concern for us, as we avoid testing anyway. However, the idea
of combining similar covariate patterns is a useful one for logistic regression
goodness of fit checking. In fact, we have already seen this idea used when we
examined a plot of age versus CHD incidence earlier on in the course.

In general, it is likely that J = n if there are one or more continuous covariates,
but most often J < n if all covariates are categorical.

Deviance test: A very similar test, also χ2 distribution with n − (p + 1) degrees
of freedom (and same technical point above) can be derived from “deviance
residuals”. See Hosmer and Lemeshow, page 146 for details.
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Hosmer-Lemeshow methods

Continuing with the above idea re grouping, consider fitting a logistic regression
model, calculating all fitted values ŷi, and grouping the covariate patterns according
to the ordering of ŷi, from lowest to highest, say.

For example, if there are 100 different covariate patterns, each with fitted value ŷj,
j = 1, 2, . . . , J , create ten groupings, the first with the 10 lowest ŷj’s, then the next
ten lowest, and so on. In this way, one can create a (2 by 10, in this case) table of
observed numbers of successes in each group (or average number, if one divides by 10
in this case) versus average prediction, πk, k = 1, 2, . . . g = 10.

One can then either plot observed versus expected (much like the age versus CHD
graph we have previously seen), or create yet another χ2 test based on the table
(we will tend not to use such tests, see Hosmer and Lemeshow page 148 for specific
formulae).

This is a nice idea, and such graphs can give a nice picture of overall fit across the
spectrum of predicted probabilities but beware of combining categories that may in
fact be quite different in observations, even if predictions are close.

Classification tables

In an idea similar to that above, one can again start by fitting a model and calculating
all fitted values. Then, one can choose a cutoff value on the probability scale, say
50%, and classify all predicted values above that as predicting an event, and all below
that cutoff value as not predicting the event.

Now, we construct a two-by-two table of data, since we have dichotomous observed
outcomes, and have now created dichotomous “fitted values”, when we used the cutoff.

Thus, we can create a table as follows:

Observed positive Observed negative
Predicted positive (above cutoff) a b
Predicted negative (below cutoff) c d

Of course, we hope for many counts in the a and d boxes, and few in the b and c
boxes, indicating a good fit.
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In an analogy with medical diagnostic testing, we can consider the following quanti-
ties:

sensitivity =
a

a+ c

and

specificity =
d

b+ d

Higher sensitivity and specificity indicate a better fit of the model.

ROC curves

Extending the above two-by-two table idea, rather than selecting a single cutoff, we
can examine the full range of cutoff values from 0 to 1. For each possible cutoff value,
we can form a two-by-two table.

Plotting the pairs of sensitivity and specificities (or, more often, sensitivity versus
one minus specificity) on a scatter plot provides an ROC (Receiver Operating Char-
acteristic) curve.

The area under this curve (AUC of the ROC) provides an overall measure of fit of
the model.

In particular, the AUC provides the probability that a randomly selected pair of
subjects, one truly positive, and one truly negative, will be correctly ordered by the
test. By “correctly ordered”, we mean that the positive subject will have a higher
fitted value (i.e., higher predicted probability of the event) compared to the negative
subject.

Logistic regression R2

As we have seen above, having defined residuals for logistic regression, we can form
the usual R2 statistic, although it is rarely used. It is almost always rather low, since
observed values need to be either 0 or 1, but predicted values are always in between
these extremes. See Hosmer and Lemeshow page 164 for details (they themselves
recommend not using this method).
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Model validation via an outside data set or by split-

ting a data set

As in linear regression, one can attempt to “validate” a model built using one data
set by finding a second independent data set and checking how well the second data
set outcomes are predicted from the model built using the first data set.

Our comments there apply equally well to logistic regression. To summarize: Little is
gained by data splitting a single data set, because by definition, the two halves must
have the same model. Any lack of fit is then just by chance, and any evidence for
good fit brings no new information. One is better off using all the data to build the
best model possible.

Obtaining a new data set improves on the idea of splitting a single data set into two
parts, because it allows for checking of the model in a different context.

If the two contexts from which the two data sets arose were different, then, at least,
one can check how well the first model predicts observations from the second model.
If it does fit, there is some assurance of generalisability of the first model to other
contexts. If the model does not fit, however, one cannot tell if the lack of fit is owing
to the different contexts of the two data sets, or true “lack of fit” of the first model.

In practice, these types of validation can proceed by deriving a model and estimating
its coefficients in one data set, and then using this model to predict the Y variable
from the second data set. One can then check the residuals, and so on.

Example

We will now apply several of the above methods in an example.

We will use the icu data previously used when we looked at multiple logistic regression.
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Description Coding variable name
Vital Status 0 = Lived STA
(Main outcome) 1 = Died
Age Years AGE
Sex 0 = Male SEX

1 = Female
Race 1 = White RACE

2 = Black
3 = Other

Service at ICU Admission 0 = Medical SER
1 = Surgical

Cancer Part of Present 0 = No CAN
Problem 1 = Yes
History of Chronic Renal O = No CRN
Failure 1 = Yes
Infection Probable at ICU 0 = No INF
Admission 1 = Yes
CPR Prior to ICU Admission 0 = No CPR

1 = Yes
Systolic Blood Pressure at mm Hg SYS
ICU Admission
Heart Rate at ICU Admission Beats/min HRA
Previous Admission to an ICU 0 = No PRE
within 6 Months 1 = Yes
Type of Admission 0 = Elective TYP

1 = Emergency
Long Bone, Multiple, Neck, 0 = No FRA
Single Area, or Hip Fracture 1 = Yes
PO2 from Initial Blood Gases 0 > 60 PO2

1 ≤ 60
PH from Initial Blood Gases 0 ≥ 7.25 PH

1 < 7.25
PCO2 from initial Blood 0 ≤ 45 PCO
Gases 1 > 45
Bicarbonate from Initial 0 ≥ 18 BIC
Blood Gases 1 < 18
Creatinine from Initial Blood 0 ≤ 2.0 CRE
Gases 1 > 2.0
Level of Consciousness at ICU O = No Coma LOC
Admission or Stupor

1 = Deep
stupor
2 = Coma
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# Read in full data set

> icu.dat <- read.table(file="g:\\icudat.txt", header = T)

>

> summary(icu.dat)

sta age sex race ser

Min. :0.0 Min. :16.00 Min. :0.00 Min. :1.000 Min. :0.000

1st Qu.:0.0 1st Qu.:46.75 1st Qu.:0.00 1st Qu.:1.000 1st Qu.:0.000

Median :0.0 Median :63.00 Median :0.00 Median :1.000 Median :1.000

Mean :0.2 Mean :57.55 Mean :0.38 Mean :1.175 Mean :0.535

3rd Qu.:0.0 3rd Qu.:72.00 3rd Qu.:1.00 3rd Qu.:1.000 3rd Qu.:1.000

Max. :1.0 Max. :92.00 Max. :1.00 Max. :3.000 Max. :1.000

can crn inf cpr sys

Min. :0.0 Min. :0.000 Min. :0.00 Min. :0.000 Min. : 36.0

1st Qu.:0.0 1st Qu.:0.000 1st Qu.:0.00 1st Qu.:0.000 1st Qu.:110.0

Median :0.0 Median :0.000 Median :0.00 Median :0.000 Median :130.0

Mean :0.1 Mean :0.095 Mean :0.42 Mean :0.065 Mean :132.3

3rd Qu.:0.0 3rd Qu.:0.000 3rd Qu.:1.00 3rd Qu.:0.000 3rd Qu.:150.0

Max. :1.0 Max. :1.000 Max. :1.00 Max. :1.000 Max. :256.0

hra pre typ fra po2

Min. : 39.00 Min. :0.00 Min. :0.000 Min. :0.000 Min. :0.00

1st Qu.: 80.00 1st Qu.:0.00 1st Qu.:0.000 1st Qu.:0.000 1st Qu.:0.00

Median : 96.00 Median :0.00 Median :1.000 Median :0.000 Median :0.00

Mean : 98.92 Mean :0.15 Mean :0.735 Mean :0.075 Mean :0.08

3rd Qu.:118.25 3rd Qu.:0.00 3rd Qu.:1.000 3rd Qu.:0.000 3rd Qu.:0.00

Max. :192.00 Max. :1.00 Max. :1.000 Max. :1.000 Max. :1.00

ph pco bic cre loc

Min. :0.000 Min. :0.0 Min. :0.000 Min. :0.00 Min. :0.000

1st Qu.:0.000 1st Qu.:0.0 1st Qu.:0.000 1st Qu.:0.00 1st Qu.:0.000

Median :0.000 Median :0.0 Median :0.000 Median :0.00 Median :0.000

Mean :0.065 Mean :0.1 Mean :0.075 Mean :0.05 Mean :0.125

3rd Qu.:0.000 3rd Qu.:0.0 3rd Qu.:0.000 3rd Qu.:0.00 3rd Qu.:0.000

Max. :1.000 Max. :1.0 Max. :1.000 Max. :1.00 Max. :2.000

# We will use just three covariates in this example, age, sex, and typ.

# Two of these are dichotomous, and one is continuous.

# First run the logistic regression model, and get the fitted values.

> output <- glm(sta ~ age + sex + typ, family=binomial, data = icu.dat)

>

> summary(output)
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Call:

glm(formula = sta ~ age + sex + typ, family = binomial, data = icu.dat)

Deviance Residuals:

Min 1Q Median 3Q Max

-1.2455 -0.7898 -0.4122 -0.2292 2.5102

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -5.50146 1.03524 -5.314 1.07e-07 ***

age 0.03489 0.01088 3.206 0.001345 **

sex -0.22173 0.39154 -0.566 0.571185

typ 2.48540 0.75489 3.292 0.000993 ***

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 200.16 on 199 degrees of freedom

Residual deviance: 172.75 on 196 degrees of freedom

AIC: 180.75

Number of Fisher Scoring iterations: 6

# Get the fitted values and plot them

> fit <- output$fitted

> hist(fit)
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Note that none are much larger than 0.5, but the event rate is only 20%.

We will first calculate the χ2 residuals

ri =
yi − ŷi√
ŷi(1 − ŷi)

across all individuals, and then go on to other goodness of fit methods.

# We will now investigate each of the above methods

# for logistic regression goodness of fit.

#################################################

# Chi-square goodness of fit test

#################################################

# Calculate residuals across all individuals

> r <- (icu.dat$sta - fit)/(sqrt(fit*(1-fit)))
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# Sum of squares of these residuals follows a chi-square

# with 200 - 4 = 196 degrees of freedom

> sum(r^2)

[1] 190.7172

# Calculate the p-value from the test

> 1- pchisq(190.7172, df=196)

[1] 0.5930901

# So, we cannot reject the null hypothesis that this

# model is exactly correct...but then again, we know that

# the model is wrong! So, not too useful a method!

# On to something a bit more useful.

#################################################

# Hosmer-Lemeshow tests

#################################################

# Strategy to calculate the Hosmer-Lemeshow groupings:

# Form a matrix with the outcome and fitted values,

# and re-order according to fitted value probabilities.

# Get indices of vector fit, from smallest to greatest

> index <- sort.list(fit)

# Look at 10 smallest indices

> index[1:10]

[1] 61 58 102 141 110 55 12 11 16 36

# Create a matrix of sta and fit, using this index

> hosmer <- matrix(c(icu.dat$sta[index], fit[index]), byrow=F, nrow=200)

> hosmer

[,1] [,2]

[1,] 0 0.006303336

[2,] 0 0.007588489

[3,] 0 0.007588489

[4,] 0 0.010722396

[5,] 0 0.019904908

[6,] 0 0.020597020
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[7,] 0 0.021312675

[8,] 0 0.021786470

...........etc........

[100,] 1 0.183401019

[101,] 1 0.188683609

[102,] 0 0.190591487

[103,] 0 0.196031469

[104,] 1 0.199597241

[105,] 0 0.201588052

...........etc........

[196,] 0 0.466823972

[197,] 1 0.513483787

[198,] 0 0.539569019

[199,] 1 0.539569019

[200,] 1 0.548223198

# Now to group into 10 groups each with 20 observations, say, and graph:

# Create a blank vector to store results

> observed <- rep(NA, 10)

> for (i in 1:10) {observed[i] <- sum(hosmer[(20*(i-1)+1):(20*i),1])/20}

# Look at observed rates

> observed

[1] 0.00 0.10 0.00 0.10 0.20 0.20 0.25 0.40 0.30 0.45

# Do same for predicted rates

# Create a blank vector to store results

> predicted <- rep(NA, 10)

> for (i in 1:10) {predicted[i] <- sum(hosmer[(20*(i-1)+1):(20*i),2])/20}

# Look at predicted rates

> predicted

[1] 0.02350724 0.04103168 0.06069354 0.08979742 0.15623928 0.22267946 0.27641412

[8] 0.30829473 0.36543618 0.45590633

# Now plot observed versus predicted



13

> plot(predicted, observed, type="b")

# Add 45% line to plot

> abline(a=0, b=1)

Note the generally reasonable fit, maybe a bit of trouble predicting some categories.

#################################################

# Classification tables

#################################################

# If we choose a cutoff of 50%, from the hosmer matrix,

# we can see ...

> hosmer

[,1] [,2]

[1,] 0 0.006303336

[2,] 0 0.007588489

...........etc......

[195,] 0 0.461235253
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[196,] 0 0.466823972

[197,] 1 0.513483787

[198,] 0 0.539569019

[199,] 1 0.539569019

[200,] 1 0.548223198

# ...that only the last four are above 50%,

# but 3/4 were in fact positive.

So, our two-by-two table becomes:

Observed positive Observed negative
Predicted positive (above cutoff) 3 1
Predicted negative (below cutoff) 37 159

So that sensitivity = 3/40 = 7.5%, and specificity = 159/160 = 99.4%. So, it seems
a cutoff of 50% will perform very badly here, missing over 90% of all true positive
cases.

Let’s see how some other cutoff values perform.

#################################################

# ROC curves

#################################################

# Again using the hosmer matrix, we can calculate

# sensitivity and specificity for different

# cutoff values, say from 0 to 1, by 10% increments.

# We will fill in these blank vectors:

> sens <- rep(NA, 11)

> spec <- rep(NA, 11)

# The first entries need no calculation

# as they represent the extreme case of a 0%

# cutoff for positivity. So, by definition:

> sens[1] <- 1

> spec[1] <- 0
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# Cutoff of 10% for positivity (occurs at index 79)

> sens[2] = sum(hosmer[79:200,1])/40

> spec[2] = sum(1-hosmer[1:78,1])/160

# Cutoff of 20% for positivity (occurs at index 105)

> sens[3] = sum(hosmer[105:200,1])/40

> spec[3] = sum(1-hosmer[1:104,1])/160

# Cutoff of 30% for positivity (occurs at index 146)

> sens[4] = sum(hosmer[146:200,1])/40

> spec[4] = sum(1-hosmer[1:145,1])/160

# Cutoff of 40% for positivity (occurs at index 178)

> sens[5] = sum(hosmer[178:200,1])/40

> spec[5] = sum(1-hosmer[1:177,1])/160

# Cutoff of 50% for positivity (occurs at index 197)

> sens[6] = sum(hosmer[197:200,1])/40

> spec[6] = sum(1-hosmer[1:196,1])/160

# Cutoff of 60% for positivity

> # Since no points above this, rest all the same

> sens[7] = 0

> spec[7] = 1

> sens[8] = 0

> spec[8] = 1

> sens[9] = 0

> spec[9] = 1

> sens[10] = 0

> spec[10] = 1

> sens[11] = 0

> spec[11] = 1

> sens

[1] 1.000 0.900 0.750 0.525 0.250 0.075
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[7] 0.000 0.000 0.000 0.000 0.000

> spec

[1] 0.00000 0.46250 0.58750 0.78750 0.91875 0.99375 1.00000 1.00000

[8] 1.00000 1.00000 1.00000

# Plot the graph of sens versus 1-spec to get the ROC curve

> plot(1-spec, sens, type="b")

# We can also calculate the Area Under the ROC Curve as follows:

# First, create separate vectors of the predicted fits

# for positive and negative subjects

> fit.pos <- fit[icu.dat$sta==1]

> fit.neg <- fit[icu.dat$sta==0]
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# Now use nonparametric Wilcoxon test on these two samples

> wilcox.test(x=fit.pos, y=fit.neg)

Wilcoxon rank sum test with continuity correction

data: fit.pos and fit.neg

W = 4789.5, p-value = 1.213e-06

alternative hypothesis: true mu is not equal to 0

# Take the value of the W statistic, and divide by

# the total number of all possible pairs

> 4789.5/(160*40)

[1] 0.7483594

# So, AUC = 74.8%.

# Why does this work? May have seen in 607 that Mann-Whitney

# statistic is equivalent to probability of correctly

# selecting the higher of a pair of numbers, which is equivalent

# to the definition of the AUC of an ROC curve.

Final Note

Do not forget, amidst all these statistical ideas, that substantive knowledge and knowl-
edge about a study design can and should play a role in thinking about a model, and
how well it suits a given purpose.

If you have good a priori reasons to believe a variable should be in a model then
simply include it, unless the evidence against it is very strong.

If the main point of a model is prediction, you might not care too much about which
independent variables are included, as long as the model “fits well”. But if the purpose
of your model is to see which variables are important, then much attention needs to
be paid to this issue.

Goodness of fit is closely related to model selection, which we will cover in the next
lecture.


