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Preface to the Second Edition

Atmospheric physics has a long history as a serious scientific discipline, extending back
at least as far as the late seventeenth century. Today it is a rich and fascinating subject,
sustained by detailed global observations and underpinned by solid theoretical foundations.
It provides an essential tool for tackling a wide range of environmental questions, on
local, regional and global scales. Although the solutions to vital and challenging problems
concerning weather forecasting and climate prediction rely heavily on the use of super-
computers, they rely even more on the imaginative application of soundly based physical
insights.

This book is intended as an introductory working text for third- or fourth-year under-
graduates studying atmospheric physics as part of a physics, meteorology, or earth and
planetary sciences degree course. It should also be useful for graduate students who are
studying atmospheric physics for the first time and for students of applied mathematics,
physical chemistry and engineering who have an interest in the atmosphere. Physics under-
graduates, in particular, will discover that a sound understanding of atmospheric physics
can be built up in the same quantitative and logical manner as the other areas of physics
that they encounter in their courses.

Modern scientific study of the atmosphere draws on many branches of physics. I believe
that a balanced introductory course in atmospheric physics should include at least some
atmospheric thermodynamics, radiative transfer, atmospheric fluid dynamics and elemen-
tary atmospheric chemistry. Armed with a basic understanding of these topics, the interested
student will be able to grasp the essential physics behind important issues of current
concern – such as how the climate changes in response to increases in greenhouse gases,
and why depletion of stratospheric ozone has occurred – as well as more familiar processes
such as the formation of raindrops and the development of weather systems.

This book therefore aims to show how basic physical principles can be applied to help
us to understand the workings of the Earth’s atmosphere. It includes treatments of the
topics mentioned in the previous paragraph, plus a few others. Attention is restricted to the
troposphere, stratosphere and mesosphere, that is, the region between the ground and about
90 km altitude. Although other planets are seldom mentioned explicitly, many of the topics
covered also apply to the atmospheres of Venus and Mars.

In contrast to many other books on atmospheric science, the emphasis in the text is on
the underlying physics; atmospheric applications are developed mainly in the problems
given at the end of each chapter. It is essential that the serious student should attempt some
of these problems, to test his or her understanding of the material and to obtain a broader
perspective on the subject than can be provided by the text alone. (In some cases important
meteorological applications have been omitted because they rely on semi-empirical rules
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rather than on basic physics; there are excellent meteorology books covering this type of
material.) Solutions to the problems are provided on a password-protected website for the
benefit of course instructors.

The book assumes a basic knowledge of thermodynamics, electromagnetic radiation
and quantum physics, together with some elementary vector calculus, at about the level
reached in core physics courses at universities. It does not assume prior knowledge of
fluid dynamics – which is frequently (and I believe mistakenly) omitted from core physics
courses. Most of the material included here is based on over twenty years’ experience
teaching atmospheric physics to undergraduate physicists at Oxford University.

This Second Edition includes a new chapter on the physics of climate change, which
builds upon material introduced in earlier chapters and aims at giving the student a broad
understanding of some of the physical concepts underlying this most important and topical
subject. I have also corrected and updated several other chapters, figures and problems.

Course instructors can use the book in its entirety, or can select topics of particular interest
to them. However, I would strongly recommend covering most sections of Chapters 2
(thermodynamics), 3 (radiation) and 4 (basic fluid dynamics) as a minimum. Later chapters
depend on these three in various ways: for example, Chapter 5 depends heavily on Chapter 4,
Chapter 6 requires a little knowledge of Chapter 2, and Chapters 7 and 8 require a good
understanding of parts of Chapter 3.

Several colleagues have provided invaluable assistance with this new edition, especially
with the new Chapter 8. In particular, Myles Allen has shared many stimulating ideas with
me on how the physics of climate change should be taught, though I take full responsibility
for any shortcomings in my treatment of the subject. I would also like to acknowledge help
and advice from Stephen Blundell, Anu Dudhia, Jonathan Gregory, William Ingram, Guy
Peskett, Keith Shine and Philip Stier, and I thank all those colleagues and students who
drew my attention to errors in the First Edition. Once again my wife, Kathleen Daly, gave
much support and encouragement during the writing process.

The following publishers have kindly given permission to reproduce or adapt figures:

The American Meteorological Society: Figure 1.7.
Springer Science and Business Media: Figures 3.15 and 3.17.
Pearson Education, Inc., Upper Saddle River, New Jersey: Figure 3.17.
Oxford University Press: Figures 5.1, 5.2 and 6.7.
The Royal Meteorological Society: Figure 6.6.
The Optical Society of America: Figure 7.8.
Elsevier: Figure 7.16.
Intergovernmental Panel on Climate Change: Figure 8.1
Taylor and Francis Ltd (http://www.informaworld.com): Figure 9.4.

I also thank the authors of these figures for permission to reproduce or adapt their material.

Figure 6.5 is drawn using data provided by J. D. Shanklin, British Antarctic Survey,
Madingley Road, Cambridge, England, CB3 0ET.

http://www.informaworld.com


1 Introduction

This chapter gives a quick sketch of some of the material to be covered in this book.
We start in Section 1.1 with an outline of some of the more important physical processes
that occur in the Earth’s atmosphere. To interpret atmospheric observations we need to
develop physical and mathematical models; they are briefly discussed in Section 1.2. Two
extremely simple models are introduced in Section 1.3: the second of these includes a
very basic representation of the greenhouse effect. In Section 1.4 we present a selection
of observations of atmospheric processes, together with simple physical explanations for
some of them. In Section 1.5 we briefly mention some ideas on weather and climate.

1.1 The atmosphere as a physical system

The Earth’s atmosphere is a natural laboratory, in which a wide variety of physical processes
takes place. The purpose of this book is to show how basic physical principles can help us
model, interpret and predict some of these processes. This section presents a brief overview
of the physics involved.

The atmosphere consists of a mixture of ideal gases: although molecular nitrogen and
molecular oxygen predominate by volume, the minor constituents carbon dioxide, water
vapour and ozone play crucial roles. The forcing of the atmosphere is primarily from the
Sun, though interactions with the land and the ocean are also important.

The atmosphere is continually bombarded by solar photons at infra-red, visible and
ultra-violet wavelengths. Some solar photons are scattered back to space by atmospheric
gases or reflected back to space by clouds or the Earth’s surface; some are absorbed by
atmospheric molecules (especially water vapour and ozone) or clouds, leading to heating of
parts of the atmosphere; and some reach the Earth’s surface and heat it. Atmospheric gases
(especially carbon dioxide, water vapour and ozone), clouds and the Earth’s surface also
emit and absorb infra-red photons, leading to further heat transfer between one region and
another, or loss of heat to space. Some of these radiative-transfer processes are discussed
in Chapter 3. Solar photons may also be energetic enough to disrupt molecular chemical
bonds, leading to photochemical reactions; see Chapter 6.

The atmosphere is generally close to hydrostatic balance in the vertical, except on small
scales; that is, the weight of each horizontal slab of atmosphere is supported by the dif-
ference in pressure between its lower and upper surfaces. An alternative statement of



2 Introduction

this physical fact is that there is a balance between vertical pressure gradients and the
gravitational force per unit volume acting on each portion of the atmosphere. On com-
bining the equation describing hydrostatic balance with the ideal gas law we find that,
in a hypothetical isothermal atmosphere, the pressure and density would fall exponen-
tially with altitude (see Section 2.3). In the real, non-isothermal, atmosphere the pressure
and density variations are usually still close to this exponential form, with an e-folding
height of about 7 or 8 km. Gravity thus tends to produce a density stratification in the
atmosphere.

Given a density stratification of this kind, a small portion of air that is displaced upwards
from its equilibrium position will be negatively buoyant compared with its surroundings and
hence will fall back towards equilibrium, under gravity; similarly a downward-displaced
portion will rise back towards its equilibrium position. Buoyancy therefore acts as a restor-
ing force; the atmosphere is said to be stably stratified. The strength of the stability of the
stratification varies from one part of the atmosphere to another.

Thermodynamic principles are essential for describing many atmospheric processes. For
example, any consideration of the effects of atmospheric heating or cooling will make
use of the First Law of Thermodynamics. The concept of entropy (or the closely related
quantity, potential temperature) frequently assists interpretation of atmospheric behaviour.
Knowledge of changes in phase between vapour, liquid and solid forms of the water in the
atmosphere is crucial for an understanding of the formation of rain and snow. Moreover, the
associated latent heating and cooling can provide important contributions to heat transfer
within the atmosphere–ocean system; for example, evaporation of a droplet of sea water
at one location and subsequent condensation of the resulting water vapour into a droplet
at another location in the atmosphere transfers heat from the ocean to the atmosphere. The
basics of atmospheric thermodynamics are covered in Chapter 2.

In atmospheric physics we use the usual macroscopic definitions of the temperature and
pressure of a gas. From the kinetic theory of gases, these have well-known interpretations
in terms of the mean kinetic energy of molecules and the mean transfer of momentum
by molecules, respectively. When considering dynamical processes – that is, the response
of atmospheric motions to applied forces – we can average other physical quantities such
as density and velocity over many molecules and regard the atmosphere as a continuous
fluid; individual molecular motions need not be taken into account. It is clear from the
most cursory weather observations that the resulting bulk fluid motion of the atmosphere is
still very complex. However, when the motion is viewed on a large scale (say hundreds of
kilometres in horizontal extent), some simplifying features appear. In particular, Coriolis
forces play significant roles: these forces result from the rotation of the Earth and tend
to deflect a moving portion of air to the right of its motion in the Northern Hemisphere
and to the left in the Southern Hemisphere. A near balance between Coriolis forces and
horizontal pressure gradient forces leads to wind motions that circulate along isobars
(surfaces of constant pressure) at a given height. The sense of the circulation is anticlockwise
around low-pressure regions and clockwise around high-pressure regions in the Northern
Hemisphere and vice versa in the Southern Hemisphere. The basic principles of atmospheric
fluid dynamics are introduced in Chapter 4.
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An important feature of the buoyancy restoring effect in a stably stratified atmosphere
is that it can support fluid-dynamical waves, known as gravity waves,1 in which the fluid
pressure, density, temperature and velocity fluctuate together. These waves may propagate,
allowing one part of the atmosphere to ‘communicate’ over great distances with other parts,
without a corresponding transport of mass. The Coriolis force can also act as a restoring
force, giving rise to further types of fluid wave motion. In particular, on large scales we find
Rossby waves, which depend crucially on the rotation and the spherical geometry of the
Earth and are associated with many observed large-scale disturbances in the troposphere
and the stratosphere. As in many other branches of physics, the study of wave motions is
an essential part of atmospheric physics; see Chapter 5.

As noted above, solar radiation can initiate photochemical reactions by dissociating
atmospheric molecules. A host of other types of chemical reaction between atmospheric
molecules, both natural and man-made, can also occur. Atmospheric chemistry is a large
and highly complex subject; in this book we focus on one small but significant branch of
the subject, namely the chemistry of stratospheric ozone. This provides a good example
of physical principles in operation and is highly topical, with direct application to the
Antarctic ozone hole and global depletion of ozone; see Chapter 6. It also demonstrates the
importance of atmospheric transport processes, by which the winds blow chemical species
from one part of the globe to another.

No study of the atmosphere can make progress without suitable observations, and all
observational techniques rely to some extent on physical principles. One important type
of observational technique is that of remote sounding, which depends on the detection of
electromagnetic radiation emitted, scattered or transmitted by the atmosphere. In Chapter 7
we describe several examples of remote sounding, looking both at space-borne and at
ground-based methods.

Climate change is a topic of great current concern. An understanding of how the Earth’s
climate has changed in the past, what determines its current state, and how it will change in
the future depends on a detailed knowledge of a wide variety of physical processes, some
of which are touched upon in this book. An outline of some of the more important physical
concepts and processes associated with climate change is given in Chapter 8.

1.2 Atmospheric models

Unlike laboratory physicists, atmospheric researchers cannot perform controlled exper-
iments on the large-scale atmosphere. The standard ‘scientific method’, of observing
phenomena, formulating hypotheses, testing them by experiment, then formulating revised
hypotheses and so on, cannot be applied directly. Instead, after an atmospheric phe-
nomenon is discovered, perhaps by sifting through a great deal of data, we develop

1 Not to be confused with the gravitational waves of General Relativity!
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models, which incorporate representations of those processes that we hypothesise are
most important for causing the phenomenon. Models act as surrogate atmospheres, on
which ‘thought experiments’ can be performed. These models are usually formulated in
terms of mathematical equations, and the ‘experiments’ are performed by solving these
equations (perhaps by computer) under various conditions and interpreting the solutions
in terms of physical behaviour. Occasionally a laboratory apparatus may provide a useful
atmospheric model. The performance of the model (and thus the appropriateness of the
hypothesised set of processes) is judged by comparing the model’s behaviour with that of the
atmosphere.

Normally, a hierarchy of models is used, starting with simple ‘back-of-the-envelope’
models and progressing through models of intermediate complexity to the highly complex
‘general circulation models’ which require large computer resources. The models consid-
ered in this book are mostly of the simpler type, although the more complex ones are briefly
discussed in Chapter 9. Since the simpler models can usually be investigated analytically
and their workings fully explored, they can provide a basic ‘physical intuition’, which
can then be applied to the interpretation of the more complex models. Because of their
very simplicity, however, they cannot usually be expected to give accurate simulations of
observed atmospheric behaviour.

The more comprehensive models bring together many of the physical principles intro-
duced in this book and allow for interactions between them. Some of these interactions may
involve complex feedbacks, however, so it may be difficult to establish causal relationships
among the various processes that are involved.

Historically, a major use of comprehensive atmospheric models has been for weather
forecasting. With the development of supercomputers, reliable longer-term climate fore-
casting is also becoming a feasible proposition, although the models used for this purpose
are still inadequate in some respects. Complex models are also used for data assimila-
tion, by providing a dynamically self-consistent means of interpolating, in space and time,
between sparse data points from a variety of sources. Data assimilation aims to provide an
accurate estimate of the time-evolving, three-dimensional state of the atmosphere, and is
nowadays a vital component of the weather-forecasting process.

1.3 Two simple atmospheric models

It is a basic observational fact that the Earth’s mean surface temperature is about 288 K.
In this section we consider whether this can be explained in simple terms, given the input
of solar radiation and some elementary atmospheric physics. We consider two models; the
first turns out to be seriously defective, but the second, which includes a simple repre-
sentation of the greenhouse effect, gives a surface temperature in reasonable agreement
with observations. Both models assume that radiation is the only heat-transfer process. To
quantify this process we introduce the irradiance, i.e. the power per unit area, associated
with any given stream of radiation: see Section 3.2.1 for a more precise definition.
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Fig. 1.1 Illustrating the calculation of the temperature of the Earth, ignoring any absorption of radiation by
the atmosphere. The parallel arrows indicate solar radiation, confined within a tube of
cross-sectional area πa2. The radial arrows indicate outgoing thermal radiation from the total
surface area 4πa2 of the Earth.

1.3.1 A model with a non-absorbing atmosphere

The solar power per unit area at the Earth’s mean distance from the Sun (the total solar
irradiance, TSI, formerly called the solar constant) is Fs = 1370 W m−2. The solar beam
is essentially parallel at the Earth, so the power that is intercepted by the Earth is contained
in a tube of cross-sectional area πa2, where a is the Earth’s radius; see Figure 1.1. The total
solar energy received per unit time is therefore Fsπa2.

We assume that the Earth–atmosphere system has a planetary albedo A equal to 0.3; that
is, 30% of the incoming solar radiation is reflected back to space without being absorbed:
this is close to the observed mean value. The Earth therefore reflects 0.3Fsπa2 of the
incoming solar power back to space.

If the Earth is assumed to emit as a black body at a uniform absolute temperature T then,
by the Stefan–Boltzmann law,

Power emitted per unit area = σT4, (1.1)

where σ is the Stefan–Boltzmann constant.2 However, power is emitted in all directions
from a total surface area 4πa2, so the total power emitted is 4πa2σT4. We assume in the
present model that all of this power is transmitted to space, with none absorbed by the
atmosphere. Then, assuming that the Earth is in thermal equilibrium, the incoming and
outgoing power must balance, so

(1 − A)Fsπa2 = 4πa2σT4. (1.2)

On substituting the values of A and Fs into this, we obtain T ≈ 255 K. The temperature
obtained from this calculation is called the effective emitting temperature of the Earth: see
equation (3.36). Its value is significantly lower than the observed mean surface temperature
of about 288 K. The present model is clearly lacking in some vital ingredient; we find
in Section 1.3.2 that inclusion of the radiation-trapping effect of the atmosphere (the
‘greenhouse effect’) leads to a surface temperature that is much closer to reality.

2 The concept of a black body is explained in Section 3.1.1; for the moment, all that is required is that the power
per unit area emitted by a black body satisfies equation (1.1). The value of σ is given in Appendix A, together
with the values of other useful physical constants.
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1.3.2 A simple model of the greenhouse effect

We now consider the effect of adding a layer of atmosphere, of uniform temperature Ta,
to the model of Section 1.3.1; see Figure 1.2. The atmosphere is assumed to transmit a
fraction Tsw of any incident solar (short-wave) radiation and a fraction Tlw of any incident
thermal (infra-red, or long-wave) radiation (these fractions are called transmittances: see
Section 3.4), and to absorb the remainder. We assume that the ground is at temperature Tg.

Taking account of albedo effects and the difference between the area of the emitting sur-
face 4πa2 and the intercepted cross-sectional area πa2 of the solar beam (see Section 1.3.1),
the mean unreflected incoming solar irradiance at the top of the atmosphere is

F0 = 1
4 (1 − A)Fs, (1.3)

or about 240 W m−2 with the given values of A and Fs. Of this, an amount TswF0 is absorbed
by the ground and the remainder (1 − Tsw)F0 is absorbed by the atmosphere.

The ground is assumed to emit as a black body. By equation (1.1) it therefore emits
an upward irradiance Fg = σT4

g , of which a proportion TlwFg reaches the top of the
atmosphere, the remainder being absorbed by the atmosphere. The atmosphere is not a black
body, but emits irradiances Fa = (1 − Tlw)σT4

a both upwards and downwards, as shown in
Figure 1.2. (By Kirchhoff’s law, the emittance – the ratio of the actual emitted irradiance
to the irradiance that would be emitted by a black body at the same temperature – equals
the absorptance 1 − Tlw; see Section 3.1.1.)

We now assume that the system is in radiative equilibrium: that is, energy transfer
takes place only by the radiative processes described above, and the associated irradiances
are in balance everywhere; we neglect any energy transfers due to non-radiative processes
such as fluid motions. Equating irradiances, we have

F0 = Fa + TlwFg (1.4a)

above the atmosphere, and

Fg = Fa + TswF0 (1.4b)

Fig. 1.2 A simple model of the greenhouse effect. The atmosphere is taken to be a layer at temperature Ta

and the ground a black body at temperature Tg. Various solar and thermal irradiances are shown.
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between the atmosphere and the ground. By eliminating Fa from equations (1.4) we
obtain

Fg = σT4
g = F0

1 + Tsw

1 + Tlw
. (1.5)

In the absence of an absorbing atmosphere, we would have Tsw = Tlw = 1, so Fg would
equal F0, giving Tg ≈ 255 K, as in Section 1.3.1. Taking rough values for the Earth’s
atmosphere to be Tsw = 0.9 (strong transmittance and weak absorption of solar radiation)
and Tlw = 0.2 (weak transmittance and strong absorption of thermal radiation), we obtain
a surface temperature of Tg ≈ 286 K, which is quite close to the observed mean value of
288 K. This close agreement is somewhat fortuitous, however, since in reality non-radiative
processes also contribute significantly to the energy balance.

We can also find the atmospheric emission from equations (1.4):

Fa = (1 − Tlw)σT4
a = F0

1 − TswTlw

1 + Tlw
(1.6)

and this gives the temperature of the model atmosphere, Ta ≈ 245 K.
This model provides a simple example of the greenhouse effect: the raised surface

temperature is due to the fact that there is less absorption (greater transmittance) for solar
radiation than there is for thermal radiation. Thus the atmosphere readily transmits solar
radiation but tends to trap thermal radiation.3 Atmospheric gases that absorb and emit
infra-red radiation but allow solar radiation to pass through relatively unscathed are called
greenhouse gases.

One way to quantify the ‘greenhouse effect’ of an absorbing gas is in terms of the
amount Fg − F0 by which it reduces the outgoing irradiance from its surface value: in
the case discussed above this reduction is 140 W m−2. This equals the difference between
the amount (1 − Tlw)σT4

g = 304 W m−2 of the thermal emission from the ‘warm’ surface
that is absorbed by the ‘cool’ atmosphere and the smaller amount Fa = (1 − Tlw)σT4

a =
164 W m−2 that the atmosphere re-emits upwards. Since the atmosphere is in equilibrium,
it also equals the difference between the downward emission Fa from the atmosphere and
the small proportion (1 − Tsw)F0 = 24 W m−2 of the solar irradiance that it absorbs.

1.4 Some atmospheric observations

In this section we present a selection of examples of basic atmospheric observations and
give some indication of their physical explanation. Further details are given in later chapters
of this book.

3 The term ‘greenhouse effect’ is a misnomer, however, since the elevated temperature in a greenhouse does not
primarily depend on the similar radiative properties of glass, but rather on the suppression of convective heat
loss.
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1.4.1 The mean temperature and wind fields

Figure 1.3 shows a typical example of the vertical structure of the temperature in the lowest
100 km of the atmosphere. The atmosphere is conventionally divided into layers in the
vertical direction, according to the variation of temperature with height. The layer from
the ground up to about 15 km altitude, in which the temperature decreases with height,
is called the troposphere and is bounded above by the tropopause. The layer from the
tropopause to about 50 km altitude, in which the temperature rises with altitude, is called the
stratosphere and is bounded above by the stratopause. The layer from the stratopause to
about 85–90 km, in which the temperature again falls with altitude, is called the mesosphere
and is bounded above by the mesopause. Above the mesopause is the thermosphere, in
which the temperature again rises with altitude.

The troposphere is also called the lower atmosphere. It is here that most ‘weather’
phenomena, such as cyclones, fronts, hurricanes, rain, snow, thunder and lightning, occur.

The stratosphere and mesosphere together are called the middle atmosphere. A notable
feature of the stratosphere is that it contains the bulk of the ozone molecules in the atmo-
sphere; see Figure 1.4. The neighbourhood of the ozone maximum in the lower stratosphere
is loosely known as the ozone layer. The production of ozone (O3) molecules occurs
through photochemical processes involving the absorption of solar ultra-violet photons by
molecular oxygen (O2) in the stratosphere, three O2 molecules eventually forming two O3
molecules. The equilibrium profile of ozone depends also on chemical ozone-destruction
processes and on the transport of ozone by the winds (see Chapter 6).

Fig. 1.3 Typical vertical structure of atmospheric temperature (K) in the lowest 100 km of the atmosphere.
Based on data from Fleming et al. (1990).



9 Some atmospheric observations

Fig. 1.4 Typical vertical structure of the mean midlatitude ozone number density (molecules m−3). Based
on data from US Standard Atmosphere (1976).

Above the middle atmosphere is the upper atmosphere, where effects of ionisation
become dominant in determining the atmospheric structure and the air becomes so rarefied
that the assumption that it can be treated as a continuous fluid starts to break down. In this
book we concentrate on the physics of the lower and middle atmospheres.

From hydrostatic balance, the pressure at any level in the atmosphere is proportional
to the mass of air above that level. From the pressure axis in Figure 1.3 it follows that
approximately 90% of the atmospheric mass is in the troposphere, a little under 10% in the
stratosphere and only about 0.1% in the mesosphere and above.4 Despite their relatively low
mass, the stratosphere and mesosphere are not insignificant, however. For example, ozone
in the stratosphere absorbs ultra-violet solar radiation, thereby protecting the biosphere
from potentially damaging effects.

Figure 1.3 is not representative of all latitudes and seasons. A more comprehensive
plot, of the zonal-mean (i.e. longitudinally averaged) temperature averaged over several
Januaries, as a function of height and latitude, is given in Figure 1.5. It will be seen that
although the general shape of the vertical variation of temperature in midlatitudes is roughly
in accord with that in Figure 1.3, there are significant latitudinal variations of the heights
and magnitudes of the temperature extrema. For example, the equatorial tropopause is at
a greater altitude and colder than that at higher latitudes, the summer stratopause is lower

4 In this book we use the unit hPa for pressure (1 hPa = 102 Pa). This is equivalent to the millibar, which was
formerly in common use in meteorology.
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Fig. 1.5 Zonal-mean temperature (K) for January, from the CIRA (COSPAR International Reference
Atmosphere) dataset. A small region at low levels over Antarctica is omitted. Based on data from
Fleming et al. (1990).

and warmer than the winter stratopause and the summer mesopause is extremely cold.
(In fact the lowest natural terrestrial temperatures are found there.)

Some of these temperature features can be crudely explained in terms of simple physical
mechanisms. For example, the warm stratopause can be attributed to the ozone distribution,
which peaks in the stratosphere; absorption of solar radiation by the ozone leads to heating
of the upper stratosphere and, since in equilibrium this heating is balanced mainly by infra-
red cooling from carbon dioxide, there must be a local temperature maximum, so that heat
can radiate to cooler regions.

If radiative control of temperature were to continue down to the ground, the temperature
in the troposphere would decrease much more rapidly with height than is observed, and this
temperature profile (and its associated density profile) would be statically unstable. Such
a temperature profile could not persist, but might be expected to give rise to convective
activity that would modify the temperature profile, causing it to decrease less rapidly with
height until it was just statically stable again. This process appears to occur in the moist
tropical troposphere, where the temperature decrease with altitude is fairly close to the
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saturated adiabatic lapse rate, the rate of decrease with height of the temperature of
a parcel of air saturated with water vapour, which condenses (releasing latent heat) as
the parcel rises; see Section 2.8. At higher latitudes other processes, such as midlatitude
cyclones and anticyclones, may also play a part in determining the temperature profile.
The position of the tropopause depends on an interplay between the processes that cause
the temperature to fall with height in the troposphere and increase with height in the
stratosphere; the precise details are a subject of active current research.

The explanations of the cold equatorial tropopause and extremely cold summer
mesopause are quite complex. It turns out that there is dynamically driven rising motion
in both of these regions; the rising air expands as it moves to lower pressure and cools.
Conversely there is descent over the winter pole, leading to temperatures that are warmer
than would otherwise be the case.

Figure 1.6 shows the zonal-mean zonal (west-to-east) winds for January. These winds are
related to the temperature field in Figure 1.5 by thermal windshear balance, as expressed

Fig. 1.6 Zonal-mean zonal wind (m s−1) for January, from the CIRA dataset. Thin solid lines: eastward
winds; thick solid line: zero winds; dashed lines: westward winds. A small region at low levels
over Antarctica is omitted. Based on data from Fleming et al. (1990).
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by equation (4.28b). In the troposphere, the mean zonal winds are generally eastward
at midlatitudes, with two prominent ‘jet streams’, and westward at low latitudes. (The
terms ‘westerly’, meaning eastward, and ‘easterly’, meaning westward, are commonly
used in meteorology, but will be avoided in this book.) In the stratosphere and mesosphere
the mean zonal winds are generally eastward in winter and westward in summer. The
winds at low latitudes shown in Figure 1.6 are not representative of every January, partly
because they do not follow a simple annual cycle in the equatorial lower stratosphere;
there is a prominent quasi-biennial oscillation there, with a period of approximately
28 months.

1.4.2 Gravity waves

Figure 1.7 shows northward and eastward wind components between altitudes of 60 and
80 km, over Alaska, measured by a ground-based radar. The radar transmits radio waves
almost vertically and measures the backscattered signal; from this, wind velocities can
be determined; see Section 7.3.2. Roughly sinusoidal wind fluctuations in the vertical are
seen, with a wavelength of about 15 km and propagating downwards in time with a period
of about 9 h.

These quasi-sinusoidal fluctuations are strongly suggestive of some kind of wave motion,
and further investigation confirms this. The waves are an example of the fluid-dynamical
gravity waves mentioned in Section 1.1. Atmospheric gravity waves are analogous to
horizontally propagating surface waves on water, which depend on the restoring mechanism
provided by the contrast in density between air and water: the water in a wave crest is denser

Fig. 1.7 An example of an atmospheric gravity wave over Alaska, as measured by a ground-based radar.
The northward and eastward wind components (in m s−1) are shown as a function of height,
between altitudes of 60 and 80 km, and at each hour over a period of about 17 hours. From
Balsley et al. (1983).
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than the surrounding air and tends to fall, while the air in a wave trough is lighter than the
surrounding water and tends to rise. We can imagine the smooth vertical density variation in
the atmosphere to be approximated by a stack of thin fluid layers, whose densities decrease
with height. The surface-wave mechanism operates at each density interface, so now the
wave can propagate vertically as well as horizontally.

The particular type of gravity wave shown in Figure 1.7 is called an inertia–gravity wave
(see Section 5.4); it is actually of large enough horizontal scale (a few hundred kilometres)
and period to be influenced to some extent by the Earth’s rotation. These measurements
provide an unusually clear example of a sinusoidal oscillation: in most cases, too many
other dynamical processes are occurring in the atmosphere for waves to be very easily
identified, and careful data analysis must be performed to isolate them.

Perhaps surprisingly, the downward phase progression of the waves in Figure 1.7 indi-
cates upward propagation of ‘information’ by the waves (i.e. an upward group velocity).
Gravity waves will be studied in detail in Section 5.4 and, among other things, it will be
shown that this type of wave is dispersive; the phase and group velocities can therefore be
in different directions. This is just one of the ways in which the propagation characteris-
tics of the atmospheric waves studied in this book differ from those of the more familiar
non-dispersive waves such as electromagnetic waves in a vacuum.

Gravity waves are generated in many different ways, including by air flow over mountains
and by convective activity in the troposphere. Waves generated in the lower atmosphere may
propagate upwards into the stratosphere and mesosphere. As the background air density
decreases, the amplitudes of the wave fluctuations in wind (and associated fluctuations in
temperature and density) will rise. As a result, gravity waves may attain large amplitudes
in the mesosphere and exert a considerable influence on the mean atmospheric state there.

1.4.3 Rossby waves

Figure 1.8 depicts the temperature in the Northern Hemisphere, at a level near 24 km
altitude, during a period when the stratosphere was disturbed by a vigorous dynamical
event known as a stratospheric warming. A cold region is located on one side of the pole
(roughly along 0◦ E) and a warm region on the other (roughly along 180◦ E). Moving around
a latitude circle near the pole, we find that the temperature varies roughly sinusoidally with
longitude, one wavelength encompassing 360◦ of longitude. The fact that the cold part
of the disturbance is smaller and stronger than the warm part shows that the fluctuation
is not exactly sinusoidal. However, the phenomenon is wave-like in many respects and is
an example of the Rossby wave mentioned in Section 1.1. The horizontal wavelength is
several thousand kilometres in extent and the wave’s dynamics are quite different from
those of the gravity wave. The propagation mechanism is rather subtle, depending both on
the rotation and on the curvature of the Earth; the details are given in Section 5.5. Rossby
waves, like gravity waves, are dispersive.

Several types of Rossby wave are observed in the atmosphere. Some are stationary,
that is, their wave patterns are fixed with respect to the Earth; since they are dispersive
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Fig. 1.8 Polar stereographic map of atmospheric temperature (K) near 24 km altitude in the Northern
Hemisphere stratosphere on 9 January 1992, as measured by the Improved Stratospheric and
Mesospheric Sounder (ISAMS) on the Upper Atmospheric Research Satellite (UARS). The North Pole
is at the centre, the 60◦ N and 30◦ N latitude circles are shown and the equator is the outer circle;
four longitudes are also shown. (Diagram supplied by Dr A. M. Iwi.)

they may still propagate information, because the group velocity may be non-zero even if
the phase speed is zero. Others have patterns that travel with respect to the Earth. Strong
disturbances in the stratosphere, such as that shown in Figure 1.8, are frequently due to
upward propagation of Rossby waves generated by large-scale weather disturbances in
the troposphere. It is found that, when the background winds are eastward, as in winter
(see Figure 1.6), only the longest-wavelength stationary Rossby waves can propagate
vertically. This accounts for the observed prevalence of larger-scale disturbances in the
winter stratosphere.

1.4.4 Ozone

As mentioned in Section 1.4.1, atmospheric ozone is important because it absorbs solar
ultra-violet radiation, thus protecting human and animal life from potentially harmful
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Fig. 1.9 Zonal-mean volume mixing ratio of ozone (parts per million by volume), as a function of latitude
and height, for January, based on the 5-year climatology of Li and Shine (1995). Data provided by
Dr D. Li.

consequences. It is therefore crucial to have good measurements of ozone concentrations
and a good understanding of the processes by which it is produced and destroyed.

A typical vertical profile of the ozone number density was shown in Figure 1.4. An
alternative measure of the concentration of a gaseous constituent of air, such as ozone, is
the volume mixing ratio, that is, the number density of the constituent divided by the total
number density of the ‘air’. A useful property of the volume mixing ratio is that, unlike
the number density, it is constant for a moving parcel of air in the absence of chemical
production and loss processes. Figure 1.9 gives a latitude–height cross-section of the zonal-
mean volume mixing ratio of ozone for January. This shows that the maximum values are
in the low-latitude stratosphere (where the photochemical production of ozone is greatest)
but also that there are significant values over the winter pole, where no production takes
place since the Sun is below the horizon all day. This suggests that ozone is transported
into the ‘polar night’ region by wind motions.

Further information on the global ozone distribution is given in Figure 1.10, which
shows the ‘column ozone’, a measure of the total number of ozone molecules in a vertical
column of atmosphere, as a function of latitude and season. Low values of column ozone
are found all year round at low latitudes, despite the fact that this is where most production
of ozone takes place. Maximum amounts are found in spring: in the Northern Hemisphere
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Fig. 1.10 The observed annual cycle in column ozone, based on the 5-year climatology of Li and Shine
(1995). The units are Dobson Units: see Section 6.7. Data provided by Dr D. Li.

this maximum occurs at high latitudes, whereas in the Southern Hemisphere it occurs at
middle latitudes; a relative minimum is found in the Antarctic spring.

The Antarctic spring minimum of column ozone in Figure 1.10 is a manifestation of
the Antarctic ozone hole, a dramatic reduction of ozone in the Antarctic stratosphere
that has been observed in spring since the mid-1970s. Intensive international efforts, both
observational and theoretical, established that this loss of ozone is due to complex chemical
and physical processes, involving chlorine resulting from man-made compounds such as
chlorofluorocarbons (CFCs), taking place on the ice and water particles that can form in the
extremely low Antarctic winter temperatures. The ozone lost during spring over Antarctica
is mostly replenished there later in the year, but this effect may be contributing to a slow
global loss of ozone. This research led to the Montreal Protocol, in which a phasing out
of CFCs was agreed by the international community. Depletion of ozone is also occurring
at other latitudes and is currently the subject of global monitoring and modelling. Further
details are given in Chapter 6.
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1.5 Weather and climate

The word weather, while having a clear enough meaning to the layperson, does not have
a precise definition in atmospheric physics. However, it tends to encompass tropospheric
events associated with atmospheric flows with length scales of hundreds of metres and
more, and time scales of a few days or less, although weather patterns may occasionally
persist for a week or two. Weather phenomena are notoriously irregular: indeed, Lorenz’s
famous pioneering work on chaotic systems originated in a study of a simple nonlinear
atmospheric model and was motivated by considerations of weather prediction. However,
atmospheric data averaged over a month or so usually behave in a more regular manner.
Most localities have regular longer-term variations in the average weather conditions,
with a roughly annual cycle. This annual cycle does not repeat precisely from one year
to the next: there may be dramatic interannual variations in the average weather at a
given place.

Much of the thrust of atmospheric research has been directed towards the improvement of
weather forecasting, for periods of up to two weeks ahead. Although present-day forecasting
is partly limited by the insufficiency of computer power and incompleteness of atmospheric
data, it is also limited to some extent by gaps in our understanding of the basic physics and
dynamics of the atmosphere.

The word climate refers to the state of the atmosphere on longer time scales, typically
averaged over several years or more. The understanding of climate and climate change does
not necessarily require a complete understanding of every weather event; conversely there
are physical processes, operating on long time scales, that are unimportant for weather
prediction but crucial for climate prediction. (An example is heat transport from the deep
ocean, which may vary on decadal or longer time scales.)

There is much current concern about whether human activity may be changing the
climate significantly, principally through an enhancement of the greenhouse effect due
to increasing levels of carbon dioxide resulting from the burning of fossil fuels and the
destruction of the tropical rain forests. Given the long time scales involved, the detection
of changes in climate is difficult; however, the latest estimates suggest, for example, that
the global mean surface air temperature has increased by about 0.7 ± 0.2 ◦C over the last
century. It is even more difficult to distinguish between man-made and natural climate
change, given the complexity of the climate system (including the atmosphere, oceans, ice
cover, biosphere and solid Earth). Since controlled experiments cannot be performed on the
climate system, we must use models to identify cause-and-effect relationships, as noted in
Section 1.2. Even the most sophisticated current models are still over-simplified. However,
the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (Solomon
et al. (2007)) states with very high confidence that the global average net effect of human
activities since 1750 has been one of warming, amounting to an increase of between 0.6
and 2.4 W m−2 in the power per unit area entering the climate system. See Chapter 8 for
more details.
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Further reading

More advanced treatments of some of the atmospheric physical processes discussed in this
chapter are given in the texts by Houghton (2002), Goody (1995) and Salby (1996). The
book by Wallace and Hobbs (2006) is an introductory text, with a sound physical basis and
with meteorological applications in mind. Holton (2004) provides an excellent introduction
to atmospheric dynamics as do Marshall and Plumb (2008) for both the atmosphere and the
ocean. A non-technical account of atmospheric waves is given by Andrews (1991). A lucid
introduction to the basic physical principles of climate change, intended for non-specialists,
is given by Archer (2007). See Lorenz (1993) for a fascinating description of the influence
of atmospheric research on the development of chaos theory.



2 Atmospheric thermodynamics

In this chapter we show how basic thermodynamic concepts can be applied to the atmo-
sphere. We first note in Section 2.1 that the atmosphere behaves as an ideal gas. Some basic
information on the various gases comprising the atmosphere is presented in Section 2.2. The
fact that the atmosphere is fairly close to being in hydrostatic balance is used in Section 2.3
to develop some very simple ideas about the vertical structure of the atmosphere. An impor-
tant quantity related to entropy, the potential temperature, is discussed in Section 2.4.
The concept of an air parcel is introduced in Section 2.5 and is used to develop ideas
about atmospheric stability and buoyancy oscillations. A brief introduction to the concept
of available potential energy is given in Section 2.6.

The rest of the chapter is devoted to the thermodynamics of water vapour in the air.
Section 2.7 recalls the basic thermodynamics of phase changes and introduces several
measures of atmospheric water vapour content. These ideas are exploited in Section 2.8, in
which some effects of the release of latent heat are investigated in a calculation of the satu-
rated adiabatic lapse rate, which gives information on the stability of a moist atmosphere.
The tephigram, a graphical method of representing the vertical structure of temperature
and moisture and calculating useful physical results, is introduced in Section 2.9. Finally,
some of the basic physics of the formation of cloud droplets by condensation of water
vapour is considered in Section 2.10.

2.1 The ideal gas law

To a good approximation the atmosphere behaves as an ideal (or perfect) gas, with each
mole of gas obeying the law

pVm = RT , (2.1)

where p is the pressure, Vm is the volume of one mole, R is the universal gas constant
and T is the absolute temperature. We can obtain the corresponding law for unit mass of
air by noting that if the mass of one mole is Mm then the density ρ = Mm/Vm. So, from
equation (2.1),

p = RT
Vm

= R
Mm

Tρ

and hence

p = RaTρ, (2.2)
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where Ra ≡ R/Mm is the gas constant per unit mass of air. The value of Ra depends on the
precise composition of the sample of air under consideration.1

2.2 Atmospheric composition

Consider a small sample of air of volume V , temperature T and pressure p, containing a
mixture of gases Gi (i = 1, 2, . . . ). If there are ni molecules of gas Gi in the sample, then
the total number of molecules in the sample is

n =
∑

ni, (2.3)

where the sum is taken over all the gases in the mixture, and the total mass of the sample is

m =
∑

mini, (2.4)

where mi is the molecular mass of gas Gi.
We define the mass mixing ratio μi of gas Gi as the total mass of the molecules of gas

Gi in the sample, divided by the total mass of the complete sample.2 Thus

μi = mini
m

. (2.5)

We now introduce the ideal gas law in the form

pV = nkBT , (2.6)

where kB is Boltzmann’s constant. (The connection with the molar form, equation (2.1),
can be seen by noting that, for one mole, n = NA, where NA is Avogadro’s number, and
recalling that R = NAkB.) The partial pressure pi of gas Gi is the pressure that would be
exerted by the molecules of Gi from the sample if they alone were to occupy volume V at
temperature T ; from equation (2.6)

pi = ni
kBT
V

. (2.7)

Similarly, the partial volume Vi of gas Gi is the volume that would be occupied by the
molecules of gas Gi from the sample if they, alone, were to be held at temperature T and
pressure p; again from equation (2.6)

Vi = ni
kBT

p
. (2.8)

1 Note that many meteorology texts use R for the gas constant per unit mass of air: however, we follow standard
physics practice and use R for the molar gas constant.

2 When the gas under consideration is water vapour, it is the practice to define the mass mixing ratio as the mass
of water vapour divided by the total mass minus the mass of water vapour, i.e. by the mass of dry air in the
sample. The mass of water vapour divided by the total mass is called the specific humidity. However, in most
cases when the mass mixing ratio is used it is a small number (e.g. <0.03 for water vapour and less still for
other trace gases such as carbon dioxide and ozone), so the difference between the two definitions is also small,
and we shall ignore it in this book.
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(Note that Dalton’s laws of partial pressures, p = ∑
pi, and partial volumes, V = ∑

Vi,
follow immediately from these definitions and equation (2.3).) From equations (2.5)–(2.7)
we can relate the mass mixing ratio to the partial pressure as follows:

μi = nmipi
mp

= mi
m

pi
p

, (2.9)

where

m = m/n (2.10)

is the mean molecular mass for the sample. We also define the volume mixing ratio νi
(also known as the mole fraction) by

νi = Vi
V

;

by equations (2.6)–(2.8) we have

νi = ni
n

= pi
p

. (2.11)

Note that the two mixing ratios are related by

μi = mi
m

νi.

Another measure of the concentration of an atmospheric gas is the number density (the
number of molecules of the gas per unit volume), ni/V . If we wish to follow the motion of
the sample of air, the number density may change either through changes of the volume V
of the sample or through changes of ni resulting from chemical reactions. For many purposes
the mass and volume mixing ratios are more convenient measures of concentration when
the transport of chemicals is being studied, since they are affected not by volume changes
but only by chemical production or loss. For other purposes, partial pressure is sometimes
used to quantify chemical concentrations.

The Earth’s atmosphere is composed mainly of nitrogen and oxygen, with a much smaller
amount of carbon dioxide and still less of certain trace gases such as ozone. See Table 2.1
for a list of some of the more important species. We shall see in Chapters 3, 6 and 8 that
some gases such as carbon dioxide, water vapour and ozone are of crucial importance in
determining the structure of the atmosphere, despite the fact that they are present only in
small amounts. This is because of their ability to absorb and emit infra-red radiation, which
is not shared by nitrogen and oxygen.

From equations (2.4), (2.10) and (2.11) the mean molecular mass of an air sample is

m = m
n

=
∑

mi
ni
n

=
∑

miνi.

Similarly, the mean molar mass M is the mean of the molar masses Mi of the constituent
gases Gi, weighted by the volume mixing ratios:

M =
∑

Miνi.

Using Table 2.1 it can be verified that the mean molar mass of dry air is about 28.97.
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Table 2.1 Some gases in the atmosphere. The unit ppmv (parts
per million by volume) is used here for CO2 and O3; this is a
standard unit of volume mixing ratio for minor species. The

volume mixing ratios are fairly uniform throughout the lower and
middle atmosphere for well-mixed gases that are mostly

chemically inert, namely N2, O2, CO2 and Ar. However, the volume
mixing ratio for CO2 is increasing by about 19 ppmv per decade:
the value quoted is the global and annual mean for 2009 (see Dr
Pieter Tans, NOAA/ESRL, www.esrl.noaa.gov/gmd/ccgg/trends/).

The unit of molar mass is g mol−1 or equivalently kg kmol−1.

Gas Volume mixing Molar mass Distribution
ratio

Nitrogen, N2 0.78 28.02 Well-mixed
Oxygen, O2 0.21 32.00 Well-mixed
Carbon dioxide, CO2 386 ppmv 44.01 Well-mixed
Water vapour, H2O �0.03 18.02 Maximum in

troposphere
Ozone, O3 �10 ppmv 48.00 Maximum in

stratosphere
Argon, Ar 0.0093 39.95 Well-mixed

2.3 Hydrostatic balance

For an atmosphere at rest, in static equilibrium, the net forces acting on any small portion of
air must balance. Consider for example a small cylinder of air, of height �z and horizontal
cross-sectional area �A, as depicted in Figure 2.1. This is subject to a gravitational force
g �m downwards, where its mass �m = ρ �A �z and g is the gravitational acceleration
(assumed constant throughout this book). This force must be balanced by the difference
between the upward pressure force p(z)�A on the bottom of the cylinder and the downward
pressure force p(z + �z)�A on the top. We therefore have

gρ �A �z = p(z)�A − p(z + �z)�A;

by cancelling �A and using the Taylor expansion

p(z + �z) ≈ p(z) + dp
dz

�z,

we get the equation for hydrostatic balance,

dp
dz

= −gρ. (2.12)

(In Chapter 4 we extend this approach to the case in which the portion of air is accelerating
and therefore no longer in static equilibrium.)

http://www.esrl.noaa.gov/gmd/ccgg/trends/
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Fig. 2.1 The vertical pressure forces acting on a small cylinder of air.

We can derive some basic properties of the atmosphere, given that it is an ideal gas and
assuming that it is in hydrostatic balance. First eliminating the density ρ from equations (2.2)
and (2.12), we obtain a useful alternative form of the hydrostatic balance equation,

dp
dz

= − gp
RaT

. (2.13)

If the temperature is a known function of height, T(z), we can in principle find the pressure
and density as functions of height also. Equation (2.13) can be rewritten

d
dz

(ln p) = − g
RaT

and this may be integrated in z from the ground (say z = 0) upwards, given the pressure at
the ground (say p0):

ln p − ln p0 = − g
Ra

∫ z

0

dz′

T(z′)
or, taking exponentials,

p = p0 exp
(

− g
Ra

∫ z

0

dz′

T(z′)

)
. (2.14)

The simplest case is that of an isothermal temperature profile, i.e. T = T0 = constant, when
the pressure decays exponentially with height:

p = p0 exp
(

− gz
RaT0

)
= p0e−z/H , (2.15)

where H = RaT0/g is the pressure scale height, the height over which the pressure falls
by a factor of e. In this isothermal case the density also falls exponentially with height in
the same way: ρ = ρ0 exp(−z/H), ρ0 being the density at the ground. For an isothermal
atmosphere with T0 = 260 K, H is about 7.6 km.
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The lapse rate � denotes the rate of decrease of temperature with height:

�(z) = −dT
dz

;

in general the temperature decreases with height (� > 0) in the troposphere and increases
with height (� < 0) in the stratosphere; see Figure 1.3. A layer in which the temperature
increases with height (� < 0) is called an inversion layer. If � is constant in the region
between the ground and some height z1, say, then the temperature in that region decreases
linearly with height and the integral in equation (2.14) can again be evaluated explicitly;
see Problem 2.3.

Another useful deduction from the hydrostatic equation in the form (2.13) is the ‘thick-
ness’, or depth, of the layer between two given surfaces of constant pressure. Suppose that
the height of the pressure surface p = p1 is z1 and the height of the pressure surface p = p2
is z2. Then, if p1 > p2, we must have z1 < z2, since pressure decreases with height when
hydrostatic balance applies. From equation (2.13), g dz = −RaT d(ln p); integration gives

z2 − z1 = −Ra

g

∫ p2

p1

T d(ln p).

The integral can in principle be evaluated if the temperature T is known as a function of
pressure p: this may be provided for example by a weather balloon or a satellite-borne
instrument. In particular, if T is constant,

z2 − z1 = RaT
g

ln
(

p1

p2

)
;

if T is not constant, we can still write

z2 − z1 = RaT
g

ln
(

p1

p2

)
,

provided that we define T as a suitably weighted mean temperature within the layer:

T =
∫ p1

p2
T d(ln p)∫ p1

p2
d(ln p)

.

Thus the thickness of the layer between two pressure surfaces is proportional to the mean
temperature of that layer.

2.4 Entropy and potential temperature

The First Law of Thermodynamics, applied to a small change to a closed system, such as a
mass of air contained in a cylinder with a movable piston at one end (see Figure 2.2), can
be written

δU = δQ + δW , (2.16)
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Fig. 2.2 A cylinder of air of volume V, at pressure p and temperature T, closed by a movable piston
(shaded).

where δU is the increase of internal energy of the system in the process, δQ is the heat
supplied to the system and δW is the work done on the system. In terms of functions of
state, equation (2.16) can be written

δU = T δS − pδV , (2.17)

where S is the entropy of the system. An alternative form of equation (2.17) is

δH = T δS + V δp, (2.18)

where H = U +pV is the enthalpy. Since equations (2.17) and (2.18) involve functions of
state, they apply both for reversible and for irreversible changes. However, we shall mostly
restrict our attention to reversible changes, for which the equations

δQ = T δS,

δW = −p δV
(2.19)

also hold.
For unit mass of ideal gas, for which V = 1/ρ, it can be shown that

U = cvT , (2.20)

where cv is the specific heat capacity at constant volume and is independent of T . Therefore
the ideal gas law, equation (2.2), implies that, for unit mass of air,

H = cvT + RaT = cpT , (2.21)

where cp = cv + Ra is the specific heat capacity of air at constant pressure. On substituting
the expression (2.21) and V = 1/ρ = RaT/p into equation (2.18), we get

T δS = cp δT − RaT
p

δp. (2.22)

Division by T gives

δS = cp
δT
T

− Ra
δp
p

= cp δ(ln T) − Ra δ(ln p), (2.23)
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and integration gives the entropy per unit mass

S = cp ln T − Ra ln p + constant = cp ln
(
Tp−κ

) + S0, (2.24)

where κ = Ra/cp, which is approximately 2
7 for a diatomic gas, and S0 is a constant.

An adiathermal process is one in which heat is neither gained nor lost, so that δQ = 0.
An adiabatic process is one that is both adiathermal and reversible; from equation (2.19) it
follows that δS = 0 for such a process. Imagine a cylinder of air, originally at temperature
T and pressure p, that is compressed adiabatically until its pressure equals p0. We can find
its resulting temperature, θ say, using equation (2.23) together with the fact that δS = 0 for
an adiabatic process, so that

cp δ(ln T) = Ra δ(ln p).

Integrating and using the end conditions T = θ and p = p0 then gives

cp ln
(

θ

T

)
= Ra ln

(
p0

p

)
,

and hence, using κ = Ra/cp again,

θ = T
(

p0

p

)κ

. (2.25)

The quantity θ is called the potential temperature of a mass of air at temperature T and
pressure p. The value of p0 is usually taken to be 1000 hPa. Using equation (2.24) it follows
that the potential temperature is related to the specific entropy S by

S = cp ln θ + S1,

where S1 is another constant. By definition, the potential temperature of a mass of air
is constant when the mass is subject to an adiabatic change; conversely, the potential
temperature will change when the mass is subject to a non-adiabatic (or diabatic) change.
As we shall see, the potential temperature is often a very useful concept in atmospheric
thermodynamics and dynamics.

2.5 Parcel concepts

We have just discussed adiabatic processes for a mass of air contained in a cylinder. To
apply similar concepts to the atmosphere, we introduce the idea of an air parcel – a small
mass of air that is imagined to be ‘marked’ in some way, so that its passage through the
surrounding air (‘the environment’) can in principle be traced. The parcel is influenced by
the environment, but we assume that it does not itself change the environment. The pressure
within the parcel is taken to equal that of the surrounding environment, but its temperature,
density and composition may differ from those of the environment. The parcel concept is
useful, but should not be taken too literally; for example, a real mass of air will rapidly mix
with its surroundings and will also inevitably influence the surrounding air.
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One simple way to think of an air parcel is to imagine it to be enclosed in a thin balloon
of negligible surface tension and heat capacity. We may also take the balloon to have
negligible thermal conductivity, in which case the parcel moves adiabatically if there are
no sources or sinks of heat within it.3 In the adiabatic case, we can extend the definition of
the potential temperature from a cylinder of air to a parcel; it is the final temperature θ of
a parcel that is imagined to be brought adiabatically from pressure p and temperature T to
pressure p0.

For an adiabatically rising parcel, the potential temperature and entropy are constant as
its height changes, so we can write(

dθ

dz

)
parcel

= 0,
(

dS
dz

)
parcel

= 0.

From equation (2.23) we therefore have the following relation between the vertical
derivatives of temperature and pressure, following the parcel:

0 = cp

T

(
dT
dz

)
parcel

− Ra

p

(dp
dz

)
parcel

,

so that

−
(

dT
dz

)
parcel

= −RaT
cpp

(dp
dz

)
parcel

= g
cp

≡ �a, (2.26)

say, where equations (2.12) and (2.1) have been used. The quantity �a is the rate of
decrease of temperature with height, following the adiabatic parcel as it rises. It is called
the adiabatic lapse rate; when applied to a mass of dry air, it is called the dry adiabatic
lapse rate (DALR) and is approximately 9.8 K km−1.

An alternative derivation of the expression (2.26) for the DALR is to note that, for unit
mass undergoing a reversible change,

δQ = T δS = cp δT − RaT
p

δp = cp δT − δp
ρ

= cp δT + g δz, (2.27)

from equations (2.19) and (2.22), the ideal gas law (2.2) and the hydrostatic equation (2.12).
For adiabatic motion of the parcel δQ = 0 and so, letting δz → 0,

−dT
dz

= g
cp

= �a,

as before.
The actual lapse rate −dT/dz in the atmosphere will generally differ from the DALR.

To investigate the implications of this, consider a parcel that is originally at equilibrium
at height z, with temperature T , pressure p and density ρ, all equal to the values for the
surroundings. Now suppose that an instantaneous upward force is applied to the parcel, so
that it rises adiabatically through a small height δz, without influencing its surroundings;
see Figure 2.3.

3 Such heat sources could be due, for example, to latent heating or cooling; see Section 2.7.
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Fig. 2.3 A parcel (shown shaded) displaced a height δz from its equilibrium position at height z (shown
dashed).

At the displaced position z1 = z + δz the parcel temperature has increased to Tp1, say,
according to the adiabatic lapse rate:

Tp1 = T +
(

dT
dz

)
parcel

δz = T − �a δz. (2.28)

On the other hand, the environment temperature at height z1 is

Te1 = T +
(

dT
dz

)
env

δz = T − � δz. (2.29)

If � �= �a there is therefore a temperature difference between the displaced parcel and its
surroundings.

However, since the pressures are the same inside and outside the parcel at height z1,
these pressures are both equal to

p1 = p +
(dp

dz

)
env

δz.

By the ideal gas law, equation (2.2), the densities inside and outside the parcel are

ρp1 = p1

RaTp1
, ρe1 = p1

RaTe1
,

respectively. The volume of the parcel at height z1 equals the volume of air displaced there;
therefore, if ρp1 > ρe1, the mass of the parcel at z1 is greater than the mass of air displaced,
so the parcel is ‘heavier’ than its surroundings. This holds provided that the temperature of
the parcel is less than that of its surroundings (Tp1 < Te1), which in turn is true if � < �a,
from equations (2.28) and (2.29), i.e. provided that the environment temperature falls less
rapidly with height than the adiabatic lapse rate; see Figure 2.4. In this case the displaced
parcel, being denser than its surroundings, will tend to fall back towards its equilibrium
level; we say that the atmosphere is statically stable (or ‘stable’, for short) near height z.

On the other hand, if � > �a, so that the environment temperature falls more rapidly
with height than the adiabatic lapse rate, a parcel displaced adiabatically upwards finds
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Fig. 2.4 Schematic height profiles of temperature, showing the dry adiabatic lapse rate (DALR) and
examples of stable and unstable environmental lapse rates.

itself ‘lighter’ than its surroundings and hence continues to rise: the atmosphere is then said
to be statically unstable (or ‘unstable’) near z; see Figure 2.4 again. If � = �a we have
neutral stability.

As a further step, we can investigate the buoyancy force on the parcel and its acceleration.
The upward buoyancy force on the parcel is g times the difference between the mass of air
displaced and the mass of the parcel, i.e.

gV1
(
ρe1 − ρp1

)
at height z1, where V1 is the volume of the parcel there. By Newton’s second law, this force
can be equated to the mass of the parcel times its acceleration, i.e.

ρp1V1
d2(δz)

dt2
.

We therefore have

d2(δz)
dt2

= g
(

ρe1

ρp1
− 1

)
= g

(
Tp1

Te1
− 1

)

= g
(

T − �a δz
T − � δz

− 1
)

= g
(

� − �a

T − �δz

)
δz

= − g
T

(�a − �) δz

to leading order in the small quantity δz. (The ideal gas law (2.2) has been used to go from
the second to the third expression here.) We therefore have an equation of the form

d2(δz)
dt2

+ N2(δz) = 0, (2.30)
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where

N2 = g
T

(�a − �) = g
T

(
dT
dz

+ g
cp

)
, (2.31)

and the temperature T in equation (2.31) is that of the environment.
In the case of a statically stable region of the atmosphere, in which �a > �, equation

(2.31) indicates that N2 > 0 and equation (2.30) represents simple harmonic motion, with
sinusoidal solutions. The parcel then oscillates up and down at an angular frequency N ,
where N is called the buoyancy frequency or the Brunt–Väisälä frequency; for the
lower atmosphere the corresponding period 2π/N is a few minutes (see Problem 2.7).
For a statically unstable region of the atmosphere, in which �a < �, N2 < 0 so that
N is imaginary, which leads to exponential solutions of equation (2.30), one of which
corresponds to the displaced parcel continuing to move at an increasing speed.

The quantity N2 is a useful measure of atmospheric stratification. It can be related to the
potential temperature of the environment as follows. Taking logarithms of equation (2.25)
and differentiating, we obtain

1
θ

dθ

dz
= 1

T
dT
dz

− κ

p
dp
dz

= 1
T

dT
dz

+ κρg
p

= 1
T

dT
dz

+ g
cpT

, (2.32)

using the ideal gas law (2.2) and the relation cp = Ra/κ . On combining equations (2.31)
and (2.32) we obtain the equation

N2 = g
θ

dθ

dz
.

Thus a region of the atmosphere is statically stable if θ increases with height and is statically
unstable if θ decreases with height.4

2.6 The available potential energy

It is frequently useful to consider the energy content of the atmosphere, so some basic
concepts are presented here. Consider first the potential energy EP of a vertical column of
atmosphere, of unit horizontal cross-section, stretching from the ground (where z = z0 and
p = p0, say) to a great height (where z = ∞ and p = 0). Since the potential energy of a
small slice, of thickness �z, of this column is (ρ �z)gz, the potential energy of the whole
column is

EP =
∫ ∞

z0

ρgz dz.

4 Note that, for a compressible atmosphere, the static stability depends on the vertical increase of the potential
temperature, not on the vertical decrease of the density, as might have been expected intuitively. The latter is
applicable only to an incompressible fluid. See Problem 2.8.
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However, ρg = −dp/dz from the hydrostatic equation (2.12), so we can write

EP = −
∫ ∞

z0

z
dp
dz

dz =
∫ p=p0

p=0
z dp,

where the integration variable has been changed from z to p and the upper and lower limits
of integration have been reversed, with a corresponding change of sign. We can integrate
the last expression in this equation by parts to get

EP = [
zp

]p=p0
p=0 +

∫ ∞

z0

p dz.

Now assuming that zp → 0 as z → ∞ and p → 0,5 we get

EP =
∫ ∞

z0

p dz + E0, where E0 = z0p0. (2.33)

The boundary term E0 = 0 if the surface elevation z0 = 0, but in general we must allow
for topography of varying height over the Earth’s surface, with z0 �= 0.

We now consider the internal energy of the air in the column. As noted in equation (2.20)
the internal energy per unit mass is cvT , so the integral of this over the mass of the
column is

EI =
∫ ∞

z0

ρcvT dz = cv

Ra

∫ ∞

z0

p dz, (2.34)

where the ideal gas law (2.2) has been used. Note that EI is proportional to the integral in
equation (2.33). We define the total potential energy ET of the column as the sum of the
potential and internal energies so, from equations (2.33) and (2.34),

ET = EP + EI = cv + Ra

Ra

∫ ∞

z0

p dz + E0 = 1
κ

∫ ∞

z0

p dz + E0,

since cv + Ra = cp = Ra/κ . Note that the integral here is the total enthalpy of the column,
since the enthalpy per unit mass is cpT , from equation (2.21), so that the enthalpy per unit
volume is cpρT = cpp/Ra, using the ideal gas law, equation (2.2).

We can extend these ideas to the atmosphere as a whole by integrating the column values
over the Earth’s surface area; for example, the global total energy is

〈ET〉 =
∫∫

surface

ET dx dy,

where x and y are horizontal coordinates.
Given any atmospheric state, it is of interest to ask whether a suitable redistribution of

mass can lead to a state of lower total potential energy, thus releasing energy that can be
converted, say, to kinetic energy of motion. The answer in general is yes, but it turns out that
the maximum amount of potential energy that can be released is in practice very much less

5 This holds in all reasonable cases; for example, p decays exponentially with z in an isothermal atmosphere, as
shown in equation (2.15).
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than 〈ET〉. Lorenz showed how the state of minimum total potential energy (or reference
state) can be calculated, assuming an adiabatic redistribution of the atmospheric mass.

A crucial part of Lorenz’s calculation was to note that, given an adiabatic redistribution
of mass, the mass of air above any given surface of constant potential temperature θ (an
isentropic surface or isentrope) will not change. This is because, in an adiabatic process,
each small mass element of air must retain its potential temperature and must therefore
remain on a given isentropic surface. Consider then the mass M1 above the isentrope θ = θ1,
say, in the actual atmospheric state; this is

M1 =
∫∫

surface

dx dy
∫ ∞

z1

ρ dz,

where z1(x, y) is the height of the isentrope. From the hydrostatic equation (2.12) this equals

M1 = 1
g

∫∫
surface

dx dy
∫ p1

0
dp = 1

g

∫∫
surface

p1(x, y) dx dy = 1
g
〈p1〉,

where p1(x, y) is the pressure on the isentrope.6 In particular the total mass of the
atmosphere is

Ms = 1
g

∫∫
surface

p0(x, y) dx dy = 1
g
〈p0〉.

The same results must hold for the reference state so that, under an adiabatic redistribution
of mass, the global integral 〈p1〉 (or global mean) of the pressure on the θ1 isentrope (and
therefore on every isentrope) must remain unchanged.

Together with other arguments, this allows the reference state and also the difference
in total potential energy between the actual and reference states to be calculated. This
difference is called the available potential energy and represents the maximum amount
of potential energy that might be released for conversion into, say, kinetic energy. The
details of the calculation are generally quite complicated; however, a simple special case is
considered in Problem 2.9.

2.7 Moisture in the atmosphere

It was mentioned in Section 2.2 that water vapour is a minor constituent of the atmosphere.
However, despite its low and variable volume mixing ratio (�0.03), water vapour plays a
crucial role in weather and climate processes. It is responsible for the precipitation (rain
and snow) that forms such an important part of our weather; it has significant radiative
effects (see Chapter 3); and, through polar stratospheric clouds, it is associated, in its ice

6 This is the global integral of the result that, under hydrostatic balance, the pressure at a given level equals g
times the mass per unit horizontal area of air above that level: see also Problem 2.1.
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Fig. 2.5 The phase transition between liquid and vapour, portrayed in a schematic temperature–pressure
diagram. The curve indicates the temperature variation of the saturation vapour pressure.

and liquid phases, with important chemical reactions that lead to the depletion of polar
ozone (see Chapter 6).

In the remainder of this chapter we consider the precipitation properties of water vapour;
these result from the physical fact that, at terrestrial atmospheric temperatures and pressures,
water undergoes phase changes between the vapour, liquid and solid states.

We recall some basic thermodynamics of phase changes, focusing first on the vapour–
liquid phase transition at a plane interface. At this transition, the vapour is saturated,7 that
is, in equilibrium with the liquid. The rates of evaporation and condensation are equal, with
as many molecules escaping from unit area of the liquid surface per unit time as return. The
phase transition is conveniently portrayed in a p–T diagram (Figure 2.5), which indicates
the temperature variation of the pressure at which the phase transition takes place (the
equilibrium vapour pressure or the saturation vapour pressure, SVP). The slope of this
curve is given by the Clausius–Clapeyron equation

dp
dT

= δS
δV

= L
T δV

; (2.35)

where δS is the entropy gained as unit mass of water changes from liquid to vapour (it
is positive, since the vapour exhibits greater disorder than does the liquid state), δV is
the increase of volume as unit mass changes from liquid to vapour (it is also positive)
and L is the latent heat of vaporization per unit mass (also called the specific enthalpy of
vaporization), given by L = T δS. In fact the specific volume Vv of the water vapour is
much greater than that of the liquid, so δV ≈ Vv = 1/ρv = RvT/p, using the ideal gas
law, equation (2.2), for the vapour; here ρv is the vapour density and Rv is the specific gas
constant for the vapour. Hence the Clausius–Clapeyron equation can be written in the more
convenient form

7 See Bohren (1987) for a clear exposition of the misleading nature of the adjective saturated in this context: in
particular for its suggestion that air can ‘only hold’ a certain amount of water vapour.
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dp
dT

= Lp
RvT2 , (2.36)

where p and T refer to the values at the phase transition.
These considerations apply to water vapour on its own, but can also be applied to water

vapour in the presence of ‘air’, provided that p is replaced by the partial pressure of water
vapour, traditionally denoted by the symbol e. Using also the notation es(T) to denote the
saturation vapour pressure (at the phase transition), we can write the Clausius–Clapeyron
equation (2.36) in the form

des

dT
= Les

RvT2 . (2.37)

Note that if L is constant (a fairly good approximation at typical atmospheric temperatures),
this can be integrated to give

es(T) = es(T0) exp
L
Rv

(
1
T0

− 1
T

)
, (2.38)

where T0 is a constant reference temperature.
We can relate the partial pressure e of water vapour to its volume mixing ratio ν and

mass mixing ratio μ, say, using equations (2.9) and (2.11):

ν = e
p

, μ = ε
e
p

, (2.39)

where p is the total air pressure, as usual, and

ε = mv

m
≈ mv

md
= 18.02

28.97
= 0.622.

Here mv is the molecular mass of water vapour, m is the mean molecular mass of moist
air and md is the molecular mass of dry air (i.e. the constituents of the air other than water
vapour). (Molar masses may also be used here.) Since the mixing ratio of the water vapour
is so small (μ < 3 × 10−2), m ≈ md. Another important measure of the moisture content
of air is the relative humidity, defined by

RH = e
es(T)

and usually expressed as a percentage.
Now consider a parcel of moist air, of unit mass, containing mass μ of water vapour, so

that μ is the mass mixing ratio of water vapour8 according to our definition (2.5). So long
as no condensation or evaporation takes place, this mass μ remains constant. The vapour
pressure of the parcel satisfies

e = μp
ε

(2.40)

by equation (2.39) and while this remains less than es(T) saturation does not occur, since
the water vapour in the parcel remains below the vapour pressure curve in Figure 2.5.

8 Or, more correctly the specific humidity: see the footnote on page 20. However, as noted there, we shall ignore
the small difference between these two quantities.
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Fig. 2.6 Saturation vapour pressure (SVP) curve (solid) and vapour pressure curve for a parcel of air
containing water vapour of mass mixing ratio = 10−2 = 10 g kg−1 (dashed). The parcel is taken to
start at the point marked by a square, at which p0 = 1000 hPa and T0 = 290 K ≈ 17 ◦C. As the
parcel rises, its vapour pressure moves down the dashed curve in the direction of the arrow,
intersecting the SVP curve at T = 13.5 ◦C and es = 15.4 hPa. In this case the lifting condensation
level is found to be about 960 hPa.

Suppose that the parcel rises adiabatically from the surface (at pressure p0 and temperature
T0); then the potential temperature of the parcel remains constant at θ = T0, while the
temperature T of the parcel falls according to

T = T0

(
p
p0

)κ

(2.41)

by equation (2.25). From equations (2.40) and (2.41) we can eliminate the pressure p of the
parcel to find how the vapour pressure varies as a function of temperature T , following the
motion of the parcel:

eparcel(T) = μp0

ε

(
T
T0

)1/κ

.

As illustrated in Figure 2.6, eventually the temperature of the rising parcel falls enough for
eparcel to equal es and saturation occurs. The pressure level at which this happens can be
calculated from equation (2.41): it is called the lifting condensation level. (However, it
should be noted that in practice liquid need not form at saturation; the vapour may become
supersaturated. It is usually necessary for small ‘condensation nuclei’ to be present before
liquid drops appear; see Section 2.10.)

A useful related concept is the saturation mixing ratio, defined as

μs(T , p) = es(T)ε

p
(2.42)
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Fig. 2.7 Contours of the saturation mixing ratio μs(T, p), in units of g kg−1.

and conveniently measured in units of grammes per kilogramme (g kg−1). If, at temperature
T and pressure p, the mixing ratio μ is less than μs(T , p), then e < es from equations (2.40)
and (2.42) and the air is unsaturated; it is saturated if μ = μs(T , p) and is supersaturated if
μ > μs(T , p). Figure 2.7 gives a plot of μs as a function of temperature and pressure. The
overall behaviour of μs is clearly consistent with the facts that it is inversely proportional
to pressure and proportional to es, which increases with temperature (see Figure 2.6).

The dew point Td of a sample of air is the temperature to which the air must be cooled
at constant pressure (i.e. not following a rising parcel), retaining its water vapour content,
for it to become saturated. Therefore, if the water vapour mixing ratio is μ, the dew point
Td satisfies the implicit equation

μs(Td, p) = μ . (2.43)

Equivalently, if the air sample initially has vapour pressure e, then es(Td) = e.
We now briefly mention the ice phase. In addition to the vapour–water phase transition

just considered, there are also ice–water and ice–vapour transitions, as shown in Figure 2.8.
The three transition lines meet at the triple point, at the temperature Tt = 273 K and
pressure pt = 6.1 hPa. The densities and, therefore, the specific volumes V of the three
phases are different at the triple point: the specific volume of liquid water is Vl = 1.00 ×
10−3 m3 kg−1, the specific volume of ice is Vi = 1.09Vl (unlike most substances, water
expands on freezing) and the specific volume of water vapour is Vv ≈ 2 × 105Vl.

The basic form (2.35) of the Clausius–Clapeyron equation applies to each of these
transitions. Since Vv � Vi and the latent heat of sublimation (ice–vapour) is approximately
constant, an approximate form of the sublimation curve can be found as in equation (2.38);
indeed, since the two latent heats are fairly similar in size, the two curves are quite close.
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Fig. 2.8 The phase transitions between ice, liquid water and water vapour. The triple point is indicated by
the small solid circle. Note that the ice–water curve is not quite vertical, but has a large negative
slope of about −1.4 × 105 hPa K−1 near the triple point.

However, the form of the ice–water transition curve is very different: here δV is small
and negative, since Vl is slightly less than Vi, but the latent heat of fusion is positive and
non-negligible. Hence the ice–water transition has a large negative slope, as indicated in
Figure 2.8.

Many of the concepts developed above for condensation of water vapour at the vapour–
liquid transition can be applied also to sublimation at the vapour–ice transition. These
include the saturation vapour pressure, saturation mixing ratio and the frost point: the
temperature to which moist air must be cooled at constant pressure for sublimation to
occur.

2.8 The saturated adiabatic lapse rate

While the air in a rising parcel remains unsaturated, the derivation of the adiabatic lapse rate
(see equation (2.26)) remains unchanged, apart from the use of the specific heat capacity
cp for the mixture of dry air and water vapour: this is always close to that for dry air alone
(see Problem 2.6). However, once saturation takes place, the calculation of the lapse rate
following the parcel must be changed significantly, because of the latent heat released.

We extend the second derivation of Section 2.5, considering a saturated parcel (which is
taken for convenience to be of unit mass) that rises a distance δz. At saturation, the mixing
ratio μ equals the saturation mixing ratio μs(T , p). If a mass |δμs| = −δμs of water then
condenses9 during the rise through height δz, an amount of latent heat

δQ = L |δμs| = −L δμs (2.44)

9 Note that δμs, as is usual for a small change, is defined as an increase in μs; therefore −δμs is a decrease
of μs.
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is given to the parcel. The liquid water is assumed to fall out of the parcel and take no
further part in its heat balance: this is an irreversible process and it also implies a loss
of heat from the parcel. Hence the parcel undergoes a non-adiabatic (and indeed a non-
adiathermal) change. However, the amount of heat removed from the parcel by the liquid
water is small compared with that remaining in the parcel, so the process is referred to as
pseudo-adiabatic.

The latent heat release δQ, given by equation (2.44), is equal to the heat input into the
parcel while it rises a distance δz and its temperature increases by δT . We assume that this
heat input occurs reversibly so

δQ = cp δT + g δz (2.45)

by equation (2.27), where cp is the value for the dry air–water vapour mixture.
On equating the two expressions for δQ in equations (2.45) and (2.44) we obtain

cp δT + g δz + L δμs = 0. (2.46)

We now need to express δμs in terms of δT and δz. From equation (2.42) we have
μs = εes/p. Taking logarithms and differentiating gives

δμs

μs
= δes

es
− δp

p
.

However, es depends only on T , so δes = (des/dT) δT ; moreover, from the Clausius–
Clapeyron equation (2.37),

1
es

des

dT
= L

RvT2 .

From the hydrostatic equation in the form (2.13) we have δp = −pg δz/(RaT), where p is
the total pressure; by collecting these results we therefore get

δμs

μs
= L δT

RvT2 + g δz
RaT

. (2.47)

By eliminating δμs from equations (2.46) and (2.47), we obtain(
cp + L2μs

RvT2

)
δT + g

(
1 + Lμs

RaT

)
δz = 0.

Letting δz → 0, we get the saturated adiabatic lapse rate (SALR) �s:

�s = −dT
dz

= g
cp

(
1 + Lμs

RaT

)
(

1 + L2μs

cpRvT2

) . (2.48)

Note that the factor g/cp on the right-hand side of equation (2.48) equals the DALR �a.
For typical atmospheric values of T and μs it is found that �s ≤ �a. Because of the

latent heat given to the air by condensation of the water vapour, the temperature drops off
less rapidly with height (by about 6–9 K km−1) at the SALR than it does at the DALR
(∼ 9.8 K km−1, as noted in Section 2.5); see Problem 2.11. Note that �s depends on
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the temperature and pressure, through its dependences on T and μs(T , p). Working in
terms of the pressure of the parcel, rather than its height, we may show (again using
g δz = −RaT δp/p) that, following the ascending parcel,

dT
dp

= �sRaT
gp

= �′
s(T , p), (2.49)

say. Curves in the T , p plane whose slopes at each point are given by equation (2.49) are
called saturated adiabatics. Given the expression for �′

s and suitable starting values of T
and p, they may readily be calculated numerically.

The arguments of Section 2.5 relating to the static stability of a region of the atmosphere
can now be extended to allow for the effects of moisture. In particular, it follows that, if the
actual lapse rate � is less than the SALR �s, then the region is statically stable even if
the air is saturated. However, if � > �s, a saturated parcel will be unstable. Moreover, if
�s < � < �a, a saturated parcel is unstable but an unsaturated one is not: this situation is
called conditional instability. See Figure 2.9 for a graphical representation of the various
cases considered here: this should be contrasted with the much simpler Figure 2.4 for a dry
atmosphere.

Fig. 2.9 An illustration of how the static stability of a region of the atmosphere varies with different values
of the lapse rate � = −dT/dz when the effects of condensation are included. The solid lines
represent the dry adiabatic lapse rate �a and the saturated adiabatic lapse rate �s. The dashed
lines show three values of the lapse rate �: as � increases, the region changes from a state of
absolute stability, through a state of conditional instability (in the shaded wedge between �s and
�a), to a state of absolute instability.
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Under a certain approximation, the saturated adiabatics can be calculated explicitly. First,
note that, for reversible processes, T δS = δQ, so equation (2.23) can be written

cp δ(ln T) − Ra δ(ln p) = δQ
T

= −L δμs

T
. (2.50)

Provided that the expression on the extreme right-hand side of equation (2.50) can be
approximated by −δ(Lμs/T),10 then

δ

(
cp ln T − Ra ln p + Lμs

T

)
= 0.

On integrating, dividing by cp, using κ = Ra/cp and taking exponentials, we get

θe(T , p) ≡ T
(

p
p0

)−κ

exp
(

Lμs

cpT

)
= constant. (2.51)

The quantity θe is called the equivalent potential temperature. By comparison of
equations (2.25) and (2.51) we see that

θe(T , p) = θ(T , p) exp
(

Lμs(T , p)

cpT

)
.

Under the given approximation, we have therefore integrated equation (2.49) explicitly, so
the curves of constant θe closely approximate the saturated adiabatics. It may be shown
that, as we follow a saturated adiabatic θe = θ0, say, to low pressure (and low temperature),
it approaches the dry adiabatic θ = θ0.

2.9 The tephigram

Meteorologists find it convenient to represent the vertical profiles of atmospheric temper-
ature and moisture on thermodynamic diagrams. These profiles may be measured for
example by an ascending instrumented balloon (a radiosonde). Thermodynamic diagrams
are particularly useful for examining the effects of moisture, for which there are no simple
formulae allowing easy analytical calculations.

One such diagram is the tephigram shown in Figure 2.10. This uses the temperature T
and entropy per unit mass S as orthogonal coordinates.11 The lines of constant S are labelled
with the corresponding values of the potential temperature θ (recall that S = cp ln θ ). They
are called dry adiabatics; the lines of constant T are called isotherms. Since

p = p0

(
T
θ

)1/κ

,

10 This may be shown to hold if Lμs/(cpT) � 1; since L/(cpT) � 10 for typical lower-atmospheric temperatures,
this approximation holds when μs � 100 g kg−1. From Figure 2.7 it can be seen that this is true over a wide
range of temperatures and pressures. See also Problem 2.11.

11 In older works, φ was used instead of S, hence the name T–φ diagram, or tephigram.
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Fig. 2.10 Tephigram, showing isotherms (solid lines sloping up to the right, labelled in ◦C), dry adiabatics
(solid lines sloping up to the left, labelled in ◦C) and isobars (slightly curved, roughly horizontal,
lines labelled in hPa), lines of constant saturation mixing ratio (dashed, labelled in g kg−1) and
saturated adiabatics (strongly curved lines that approach the dry adiabatics near the top of the
diagram). Also plotted is the environment curve (heavy solid line segments) and the dew point
curve (dotted line segments) for one particular radiosonde ascent.

curves of constant pressure can also be plotted; in the range of T and θ relevant for the lower
atmosphere, these are almost straight. The isotherms (parallel to the S axis) and the dry
adiabatics (parallel to the T axis) are chosen to point at 45◦ above and below the horizontal,
respectively, so that the curves of constant p (isobars) become roughly horizontal.

Also included in Figure 2.10 are two other sets of curves, related to moisture. The first
are the lines of constant saturation mixing ratio μs(T , p): these are almost straight and
are drawn dashed. (Note that we can if we wish use T and p as independent variables
for plotting points on the tephigram, instead of T and S.) They can be plotted using
equation (2.42) if an accurate expression for es(T) is known. Also plotted are the saturated
adiabatics; these are noticeably curved. Each saturated adiabatic can be labelled by the
temperature at which it cuts the p = 1000 hPa surface (the wet-bulb potential temperature
θw) or the potential temperature which it approaches at low p (the equivalent potential
temperature θe).
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During the ascent of a radiosonde the temperature T is measured at a series of pressure
levels p, and these can be plotted on the tephigram, to give the environment curve.
Straight-line segments are drawn between each point, rather than a smooth curve. This
gives a representation of a vertical column of atmosphere – but note that this may be
slightly misleading, since the balloon takes some time to ascend and also blows some
distance downwind as it does so. The dew point is also plotted at each pressure level,
giving a separate curve. Equation (2.43) then allows us to find the mixing ratio μ at any
pressure level on the environment curve, given the corresponding dew point: we just read
off the value of μs at the same pressure on the dew point curve.

Many useful results can be obtained from the environment and dew point curves, includ-
ing inferences about the onset of instability and the formation of clouds: see Problems 2.12
and 2.13.

2.10 Cloud formation

In the previous sections we have considered only the case of a flat interface between liquid
and vapour. However, this is not directly relevant for the formation of cloud droplets, which
are approximately spherical. We shall show in this section that it is essential to allow for the
effects of surface tension on cloud droplets. A further finding is that large supersaturation
(a vapour pressure e significantly greater than the SVP es, or a relative humidity significantly
greater than 100%) is required if cloud droplets are to form spontaneously from water
vapour: in fact small particles (cloud condensation nuclei) are usually needed in the
formation process.

For including the effects of surface tension, we introduce the Gibbs free energy

G = U − TS + pV

and note that, using equation (2.16),

δG = −S δT + V δp. (2.52)

Consider a water droplet immersed in water vapour, at partial pressure e and temperature
T (the remaining ‘dry air’ plays no role and can be ignored). Suppose that the liquid and
vapour are not in equilibrium, so that e �= es(T), the SVP.12 Suppose that the Gibbs free
energy per unit mass of the vapour is Gv(T , e) and that of the liquid is Gl(T , e). Now let the
partial pressure be varied slightly from e to e + δe, while the temperature is held constant.
From equation (2.52) it follows that there are small changes to Gv and Gl, given by

δGv = Vv δe, δGl = Vl δe,

12 It can be shown that the difference in pressure between the droplet and the surrounding vapour, due to surface
tension, can be ignored here; see Salby (1996), Section 9.2.1.
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where Vv and Vl are the specific volumes of the vapour and liquid, respectively. However,
Vv � Vl, hence

δ(Gv − Gl) = (Vv − Vl) δe ≈ Vv δe.

The vapour satisfies the ideal gas law Vv = RvT/e, so

δ(Gv − Gl) = RvT
δe
e

= RvT δ(ln e).

Integrating at fixed T gives

Gv(T , e) − Gl(T , e) = RvT ln e + F(T),

where F(T) is a function of integration. However, at equilibrium, on the vapour pressure
curve where e = es(T), the specific Gibbs free energies Gv and Gl are equal. (This result is
used in the standard derivation of the Clausius–Clapeyron equation.) Using this condition
to fix F(T), we get

Gv(T , e) − Gl(T , e) = RvT ln
(

e
es(T)

)
. (2.53)

Now suppose that at some initial time we have a mass m0 of water vapour, at partial
pressure e and temperature T , with no droplet present. The total Gibbs free energy at this
time is

G0 = Gv(T , e)m0. (2.54)

A droplet then starts to condense, at fixed temperature and pressure; suppose that at some
later instant its radius is a, so that its surface area is A = 4πa2 and its mass is ml = 4πa3ρl/3
(where ρl is the density of the liquid) and the mass of the surrounding vapour is mv. The
total Gibbs free energy of the system is now the sum of the Gibbs free energies of the liquid
and vapour, plus a contribution due to surface tension:

G = Gv(T , e)mv + Gl(T , e)ml + γ A, (2.55)

where γ is the surface tension (or the surface energy per unit area). By conservation of
mass mv = m0 − ml, so, using equations (2.54) and (2.55), we get

G − G0 = (Gl − Gv)ml + γ A

and, using equation (2.53),

G − G0 = −4
3
πa3ρlRvT ln

(
e

es(T)

)
+ 4πa2γ . (2.56)

The variation with radius a of the total Gibbs free energy of the system therefore takes the
form

G(a) = G0 − βa3 + αa2.

Figure 2.11 plots this function for two values of the relative humidity e/es. Several useful
facts can be learned from this figure. Note first that, if e ≤ es(T) (indicating subsaturated
or exactly saturated conditions), then the logarithm in equation (2.56) is negative or zero,
so that β ≤ 0 and the curve of G(r) has no turning point other than a = 0. However, if
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Fig. 2.11 A schematic plot of the Gibbs free energy G as a function of the droplet radius, for RH = e/es =
90% and 110%. The second curve reaches a maximum at the radius a given by equation (2.57).

e > es(T) (indicating supersaturated conditions), then the logarithm is positive, β > 0, and
there is a maximum of G at a radius a given by

a = 2α

3β
= 2γ

ρlRvT ln(e/es(T))
. (2.57)

This is known as Kelvin’s formula; it may also be written in the form

e = es(T) exp
(

A
a

)
where A = 2γ

ρlRvT
. (2.58)

A well-known thermodynamic result is that a system at constant temperature and pres-
sure tends to evolve in such a way that its Gibbs free energy decreases;13 stable equilibrium
is attained when the Gibbs free energy is a minimum. On the other hand the radius a given
by equation (2.57), at which G is a maximum, corresponds to an unstable equilibrium.
Equation (2.58) shows how the partial pressure e of the vapour over a spherical droplet of
radius a in this equilibrium state differs from the SVP es(T), in the presence of surface ten-
sion; see Figure 2.12. Note that an (unstable) equilibrium radius a = 0.01 μm corresponds
to a relative humidity RH � 112%, whereas a = 0.1 μm corresponds to RH � 101%. As
a → ∞ we recover the ‘plane surface’ result RH → 100%, i.e. e → es.

The fact that the droplet is in unstable equilibrium at the radius a given by equation (2.57)
implies that condensation of a small quantity of vapour increases its radius slightly, and
so the droplet continues to grow by further condensation. On the other hand, if a small
amount of evaporation occurs at the equilibrium radius, the droplet continues to shrink by
evaporation, eventually disappearing altogether.

13 See also Section 6.1.
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Fig. 2.12 Plot of relative humidity RH = e/es over a spherical droplet in unstable equilibrium, as a function
of droplet radius a, at 5 ◦C. Equivalently, it shows the (unstable) equilibrium radius of a spherical
drop as a function of the ambient RH, at 5 ◦C.

We can therefore see that, if a cloud droplet is to survive, it must somehow attain a
radius greater than the equilibrium radius a corresponding to the ambient relative humidity.
Given that the RH in clouds is seldom greater than about 101%, Figure 2.12 would require
a radius greater than about 0.1 μm. A droplet of this size is unlikely to form by random
collisions of smaller droplets, so a more viable process is for the droplet to condense on a
small pre-existing solid or liquid particle, known as a cloud condensation nucleus.

The above theory must be modified significantly if solutes are present in the cloud droplet.
Raoult’s law states that, over a droplet containing N moles of solute and N0 moles of pure
water, the vapour pressure must be modified by the factor

φ = 1 − N
N0

if N � N0. Consider a spherical droplet of radius a and volume Va = 4πa3/3 containing
a mass m of solute of molar mass M . Then N = idm/M , where id is the number of
ions produced by the dissociation of one solute molecule. For example id = 2 for NaCl,
which dissociates completely into Na+ and Cl− ions. Also N0 = ρlVa/Mw approximately,
where ρl is the density of the pure water and Mw is the molar mass of pure water. (This
approximation ignores the small mass m of solute within the droplet and the fact that the
density of the solution is slightly different from ρl.) We therefore obtain

φ = 1 − B
a3 , where B = 3idmMw

4πρlM
; (2.59)

combining equations (2.59) and (2.58) we obtain the relative humidity RH, given by

RH ≡ e
es(T)

= exp
(

A
a

)(
1 − B

a3

)
. (2.60)
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Fig. 2.13 The Köhler curve (solid) for the relative humidity RH = e/es over a spherical droplet of water
containing solute, as a function of droplet radius a, at 5 ◦C. The solute is taken to be 10−19 kg of
NaCl. The Kelvin factor is given by the dotted curve and the Raoult factor is given by the
dash-dotted curve. The thick horizontal dashed line and points A and B are discussed in the text.

Figure 2.13 gives an example of this function of radius a: this is called a Köhler curve.
Also plotted are the Kelvin factor exp(A/a), which decreases with increasing a, and the
Raoult factor φ = 1− (B/a3), which increases with increasing a. The relative humidity has
a maximum at a = ac; in this example ac ≈ 0.2 μm, at which value RH = RHc ≈ 100.4%.

Consider such a droplet in air with an ambient relative humidity less than this value
of RHc, as given say by the thick dashed horizontal line in Figure 2.13. For this ambient
RH there are two equilibrium values of a, on either side of ac. The smaller value (point
A) corresponds to stable equilibrium, for if the RH over the drop falls slightly below the
ambient value, corresponding to a slight decrease in the drop’s radius, condensation will
occur and the radius will increase again to the equilibrium value. Conversely, a slight
increase in radius will cause some evaporation, leading to a decrease in radius to the
equilibrium value. A stable droplet of this kind is called a haze droplet. However, the other
equilibrium point, B, will correspond to instability: for example, a slight increase in radius
will lead to condensation and hence to a further increase in radius. The droplet is then said
to be activated.

The analysis given above considers only the water vapour in the immediate neighbour-
hood of the droplet. However, if the droplet is to grow, there must be a continual supply
of water vapour to its surface. This can happen by diffusion if there is a vapour density
gradient in the region surrounding the droplet, with the vapour density increasing with
distance. A simple representation of this diffusion is in terms of Fick’s law

f = −D∇ρv,
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Fig. 2.14 A sketch indicating inward diffusion of water vapour, through a sphere Sr , onto a droplet of
radius a.

where ρv is the vapour density, f is the vapour-flux vector and D is a diffusion coefficient,
assumed constant. Assuming that at some instant the radius of the droplet is a and that the
distribution of the vapour density is spherically symmetric, ρv = ρv(r), the total inward
flux of mass of vapour through a sphere Sr of radius r > a is

−
∫

sr

f · n dS = 4πr2 dρv

dr
D,

where n is the outward normal to Sr; see Figure 2.14.
However, water vapour is lost only by condensation at r = a, so for r > a this flux must

be independent of r and equal to the rate of increase of mass of the droplet, dMl/dt. Hence

dρv

dr
= dMl/dt

4πD
1
r2 ,

which can be integrated from r = a to r = ∞ to give

ρv(a) = ρv(∞) − 1
4πDa

dMl

dt
.

Therefore, using the ideal gas law ρv = e/(RvT) for the vapour,

dMl

dt
= 4πDa [ρv(∞) − ρv(a)] = 4πDa

Rv

[
e(∞)

T(∞)
− e(a)

T(a)

]
,

where e(∞) and T(∞) are the vapour pressure and temperature far from the droplet and
e(a) and T(a) are the same quantities at its surface.
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Further reading

There are many thermodynamics textbooks covering the material used in this chapter:
an excellent, comprehensive modern example is Blundell and Blundell (2009). Good
treatments of atmospheric thermodynamics, giving more detail than is presented here, are
to be found in Wallace and Hobbs (2006), Salby (1996) and Bohren and Albrecht (1998).
The original work on the concept of available potential energy was carried out by Lorenz
(1955). More accurate empirical formulae for es(T) than equation (2.38) are available: see,
for example, Bolton (1980). (One such formula has been used in Figures 2.6, 2.7 and 2.10.)
A comprehensive treatment of the tephigram is given by McIntosh and Thom (1983); see
also McIlveen (1991). A good text on cloud physics is Rogers and Yau (1989).

Problems

Problem 2.1 Use the hydrostatic equation to show that the mass of a vertical column of air
of unit cross-section, extending from the ground to a great height, is p0/g, where p0 is the
surface pressure. Hence estimate the total mass of the atmosphere. Estimate also the total
enthalpy of the atmosphere: this may be taken as a measure of the total heat content of the
atmosphere.

In a thought-experiment the temperature of the atmosphere is decreased by 1 K every-
where and the heat thereby released is given to the top 100 m of the ocean, whose
temperature rises by an amount δT everywhere. Find δT . Comment on the possible impli-
cations of this result for climate change. [Take the specific heat capacity of sea water to be
4.2 kJ K−1 kg−1.]

Problem 2.2 A balloon is required to carry an instrument payload of 100 kg to an altitude
where the pressure is 12 hPa and the temperature is 230 K. The total mass of the payload
plus the balloon is 150 kg. What approximate radius of balloon is needed, assuming that
after being charged with a measured ‘bubble’ of helium at launch it just becomes spherical
at float altitude?

What are the relative merits and disadvantages of balloons, satellites and aircraft as
instrument platforms?

Problem 2.3 Show that, if there is a uniform lapse rate �, the pressure in the atmosphere is
given by

p(z) = p0

(
1 − �z

T0

)g/(�Ra)

where p0 is the pressure and T0 is the temperature at the ground, z = 0, and Ra is the gas
constant per unit mass of air. Calculate the height at which the pressure is 0.1 of its surface
value assuming a surface temperature of 290 K and (i) a uniform lapse rate of 10 K km−1

and (ii) a uniform temperature of 290 K.
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Problem 2.4 Define the potential temperature θ . What is the temperature as a function of
pressure in an atmosphere for which the lapse rate equals the DALR?

Show that an atmosphere of uniform potential temperature must have a finite depth.
Calculate this depth for an Earth-like atmosphere with θ = 300 K.

Problem 2.5 Using an argument similar to that in Section 2.5, but comparing the potential
temperature of a parcel with that of the surrounding air, show directly that the air is statically
stable if dθ/dz > 0.

Problem 2.6 Derive an expression for the specific heat capacity cp for air with a water
vapour mass mixing ratio of μ. (Use the fact that cp = (∂H/∂T)p, where H is the enthalpy
per unit mass; cf. equation (2.21).) Compare the values of the DALR for completely dry
air and when μ = 0.02. (The value of cp for water vapour is given in Appendix A.)

Problem 2.7 Calculate the period of oscillation of an air parcel given that dT/dz =
−6.5 K km−1 and T = 270 K.

Problem 2.8 Show that the ‘density lapse rate’ satisfies

− g
ρ

dρ

dz
= N2 + g2

c2
s

,

where c2
s = pcp/(ρcv). (cs ≈ 330 m s−1 is the speed of sound in air.) Comment on the

implications for static stability if the density decreases very slowly with height.

Problem 2.9 Estimate the total potential energy per unit area for the Earth’s atmosphere,
assuming that it is at a uniform potential temperature of 300 K. An atmosphere similar
to that of the Earth is initially all at a uniform potential temperature θ . The air in one
hemisphere is heated is such a way that its potential temperature is raised uniformly by an
amount �θ . Find an expression for the amount of available potential energy per unit area
that is generated.

Problem 2.10 Show that the density of water vapour at saturation is given as a function
of temperature by

ρvs = A e−T1/T

T
,

where T1 = L/Rv and A is a constant. Assuming a constant lapse rate, as in Problem 2.3,
show that the following approximations are valid for heights z � T0/�:

T−1 ≈ T−1
0

(
1 + �z

T0

)
≈ T−1

0 exp
(

�z
T0

)
.

Hence show that ρvs decays exponentially with z under these approximations. Evaluate
the e-folding height (in km) for this decay in a tropical atmosphere with T0 = 300 K and
� = 6.5 K km−1 and comment on how it compares with a typical pressure scale height.
Check the self-consistency of your approximations in this case.
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Fig. 2.15 Portion of a tephigram for use in Problem 2.12.

Given a relative humidity of 80%, calculate the total mass of water vapour per unit
horizontal area in a vertical column of atmosphere. If all this water vapour were to precipitate
out, how many millimetres of rain would result? How much latent heat per unit horizontal
area would be released?

Problem 2.11 Estimate the terms Lμs/(RaT) and L2μs/(cpRvT2) in equation (2.48) for
the SALR, given a reasonable estimate of T and p, using Figure 2.7 to estimate μs. Hence
derive an estimate for the SALR.

Problem 2.12 Figure 2.15 shows a portion of a tephigram. The solid circles represent a
temperature sounding and the open circle at 1000 hPa gives the dew point there.

Describe the fate of an air parcel that starts at the ground and rises. At what pressure
is its lifting condensation level? What happens to the parcel after condensation starts to
occur, and how much further can it rise before it becomes neutrally buoyant with respect
to the surrounding atmosphere? Where would you expect clouds to form? (You should
include clear statements about the stability or otherwise of the various vertical regions of
the atmosphere up to 400 hPa.)

Problem 2.13 Suppose that an imaginary air parcel is moved reversibly around a closed
circuit in the tephigram, i.e. that it is forced through a cyclical process in which its temper-
ature, entropy and, therefore, pressure are varied. Using the First Law of Thermodynamics,
equation (2.17), show that the work per unit mass done on the parcel is given by the area
enclosed by the circuit (described clockwise) in the tephigram. Find the work done on a
parcel of mass 1 kg that is moved clockwise around the circuit delineated by the 20 ◦C and
30 ◦C dry adiabatics and the 0 ◦C and −10 ◦C isotherms.
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Problem 2.14 Calculate the times taken for water drops of radii 1, 10 and 100 μm to fall
a distance of 1 km in air at the terminal velocity (take the dynamic viscosity η for air to be
1.7 × 10−5 kg m−1 s−1). Use Stokes’ law, which states that the viscous force on a spherical
drop of radius r and speed v is 6πηrv.

The condition for Stokes’ law to hold is that the dimensionless Reynolds number,
Re ≡ ρvr/η, should be small, where ρ is the air density (see e.g. Acheson (1990)). Check
the validity of this condition for each drop radius and comment on your result.

Problem 2.15 Show that the temperature Ti at the surface of a spherical ice crystal of
mass Mi growing in a cloud of water droplets at temperature T is given by

Ti − T = Ls

4πλ

Ṁi

r
,

where Ls is the specific latent heat of sublimation of ice, Ṁi is the rate of the increase in
mass, r is the radius and λ is the thermal conductivity of the air.

Show also that
Ṁi

r
= 4πD

Rv

(
e
T

− ei

Ti

)
,

where D is the diffusion coefficient of water molecules in air, Rv is the gas constant per
unit mass of water vapour and e and ei are the saturation vapour pressures over water and
ice respectively.

Given that (e/T) − (ei/Ti) = 6.7 × 10−2 Pa K−1 at the relevant temperature (approx-
imately −10 ◦C) calculate (i) the temperature difference between the surface of the ice
crystal and the air some distance away and (ii) the time taken for the crystal to grow from
1 to 100 μm radius.

(Take λ = 2.4 × 10−2 W m−1 K−1 and D = 0.23 × 10−4 m2 s−1.)



3 Atmospheric radiation

This chapter outlines the basic principles of energy transfer by electromagnetic radiation in
the atmosphere. First, in Section 3.1, we introduce the Planck function, the solar spectrum
and the concept of local thermodynamic equilibrium. Then in Section 3.2 we list some
formal definitions of radiometric quantities and derive and solve the radiative-transfer
equation, which describes the way in which radiative power is affected by extinction and
emission of radiation. In Section 3.3 we present some key facts of molecular spectroscopy
and give some of the properties of spectral line shapes. In Section 3.4 we introduce the
concept of transmittance, the fraction of radiative power that survives propagation from
one point to another. In Section 3.5 we apply the concepts introduced in earlier sections
to the absorption and emission of infra-red radiation and the absorption of ultra-violet
radiation by gases in the atmosphere. This absorption and emission lead to heating and
cooling; the principles of the calculation of heating rates are outlined in Section 3.6. In
Section 3.7, we revisit the greenhouse effect, investigating two models that are slightly
more realistic than that described in Section 1.3.2. Finally, in Section 3.8, we discuss a
simple model of atmospheric scattering.

Radiative heating and cooling play crucial roles in the physics of climate change: more
details will be given in Chapter 8. The solution of the radiative-transfer equation also
underlies certain techniques of atmospheric remote sounding: see Chapter 7.

It is an unfortunate fact that quantitative calculations of radiative heating rates, for exam-
ple, involve considerable geometric and algebraic detail, which tend to distract attention
from the basic physics of the processes. This chapter emphasises the underlying physical
concepts as much as possible and keeps the formal mathematics to a minimum; however,
the mathematics cannot be avoided entirely.

3.1 Basic physical concepts

The subject of atmospheric radiation is concerned with the transfer of energy within the
atmosphere by photons, or equivalently by electromagnetic waves. We recall that the
wavelength of visible light lies between the violet at about 0.4 μm (400 nm) and the red
at about 0.7 μm (700 nm). Ultra-violet radiation has wavelengths shorter than 400 nm and
infra-red radiation has wavelengths longer than 0.7 μm. It is convenient to split the infra-
red into the near infra-red, between about 0.7 and 4 μm, the thermal infra-red, between
about 4 and 50 μm, and the far infra-red, between about 50 μm and 1 mm.
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In the atmosphere, the relevant photons fall naturally into two classes.

• Solar (or short-wave) photons, emitted by the Sun; these correspond to ultra-violet,
visible and near infra-red wavelengths between about 0.1 and 4 μm.

• Thermal (or long-wave) photons, emitted by the atmosphere or the Earth’s surface; these
correspond mainly to thermal infra-red and far infra-red wavelengths, between about 4
and 100 μm.

These two wavelength ranges represent spectral regions of significant black-body emission
at temperatures of about 6000 K (a temperature representative of the solar photosphere)
and 288 K (the Earth’s mean surface temperature), respectively; see Section 3.1.1.

To study the effects of atmospheric radiation, it is necessary to investigate the interaction
between photons and atmospheric gases. One way in which solar photons may be lost is by
interaction with molecules at certain discrete frequencies, each frequency ν corresponding
to an orbital transition of an electron to a higher energy level according to the formula
�E = hν, where �E is the difference in energy levels and h is Planck’s constant. (The
corresponding wavelength λ is given by λ = c/ν = hc/�E, where c is the speed of light.)
However, the resulting excited state has a limited lifetime and the excitation energy may
be lost again in one of two ways.

(a) The electron falls back to the ground state, re-emitting a photon of the same energy
and frequency as the original photon, but in a random direction. This process is called
radiative decay.

(b) At sufficiently high pressures, molecular collisions are likely to occur before re-
emission takes place, leading to transfer of the excitation energy �E to other forms of
energy: the photon is then said to have been absorbed. If kinetic energy is produced in
the process, this will quickly be shared between molecules by collisional interactions
and (since thermal energy is the macroscopic expression of molecular kinetic energy)
local heating of the atmosphere takes place. This transfer of photon energy to heat is
called thermalisation or quenching.

Radiative decay, defined in (a), is an example of the scattering of a photon of a given,
discrete, frequency by an atmospheric molecule. More important for atmospheric physics,
however, is the scattering of photons, over broad ranges of frequencies, by atmospheric
molecules and by solid or liquid particles in suspension in the atmosphere. (A suspension
of this kind is called an aerosol.) In the case of scattering by molecules, whose dimensions
are much less than the wavelength of the solar radiation, we have Rayleigh scattering (see
Section 7.3.2 for more details). In the case of scattering by aerosol particles such as dust
and smog, whose dimensions are comparable to the wavelength of the solar radiation, we
have the more complex Mie scattering. For scattering by particles such as cloud droplets
or raindrops, which are much larger than the wavelength of the solar radiation, geometric
optics applies; this describes optical phenomena such as rainbows and haloes.

The term extinction is used to denote loss of energy from an incoming photon. This can
occur either by absorption or by scattering.

Absorption of solar photons may also cause photo-dissociation, i.e. the breakdown of
the molecules, leading to photochemical reactions, and photo-ionisation, in which outer
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electrons are stripped from atoms. These interactions occur over a continuous range of
frequencies, provided that the energy of the incoming photon is large enough.

Thermal photons may be absorbed and scattered in a similar manner to solar photons.
They may also be emitted, by the inverse process to absorption, with energy being drawn
from molecular kinetic energy, thus leading to a local cooling of the atmosphere. However,
at the infra-red frequencies involved here, the relevant �E corresponds to a difference
between the energies of pairs of vibrationally or rotationally excited states of the emitting
molecule, rather than the energy of an electronic transition; see Section 3.3.

In this chapter we shall use the frequency ν and wavelength λ, as appropriate, to
describe radiative properties. A related quantity is the wavenumber ν̃ = ν/c = 1/λ; this
is commonly used in spectroscopy and is often measured in units of cm−1. It should not
be confused with the quantity k = 2π/λ, also called the wavenumber, that is used in the
description of wave motion (e.g. Section 5.4).

3.1.1 The Planck function

An isothermal cavity is defined as a cavity whose walls are maintained at a uniform
temperature. Under thermodynamic equilibrium conditions, the radiation within such a
cavity is in equilibrium with the cavity walls and it can be shown that the spectral energy
density (the energy per unit volume, per unit frequency interval) depends only on frequency
and temperature; the radiation is also isotropic. If a small hole is cut in the cavity then the
emitted radiation will have the same form as the radiation within the cavity. Radiation of
this kind is called black-body radiation.

Planck’s law states that the spectral energy density of black-body radiation at absolute
temperature T is given by

uν(T) = 8πhν3

c3{exp[hν/(kBT)] − 1} ,

where kB is Boltzmann’s constant. Since the photons carrying this energy are moving
isotropically, the energy density associated with the group of photons moving within a
small solid angle �� steradians is uν ��/(4π). Consideration of the energy flow per unit
time, per unit area, transferred at speed c by this group of photons then shows that the
power per unit area, per unit solid angle, per unit frequency interval (the spectral radiance;
see Section 3.2.1) for black-body radiation at temperature T is

Bν(T) = 2hν3

c2{exp[hν/(kBT)] − 1} ; (3.1)

this is called the Planck function.
The black-body spectral radiance can also be written in terms of the power per unit area,

per unit solid angle, per unit wavelength interval,

Bλ(T) = 2hc2

λ5{exp[hc/(λkBT)] − 1} ; (3.2)
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Fig. 3.1 Logarithm of the black-body spectral radiance Bλ(T), plotted against the logarithm of wavelength
λ, for T = 6000 K, a typical temperature of the solar photosphere, and 288 K, the Earth’s mean
surface temperature.

see Problem 3.1. Figure 3.1 shows Bλ for temperatures of 6000 and 288 K. Since large
ranges of wavelengths and spectral radiances are under consideration, it is convenient to
use a log–log plot here. Note that the curve for 6000 K lies above that for 288 K for all
wavelengths: in fact Bλ and Bν always increase with temperature at fixed λ and ν. (However,
when account is taken of the small solid angle subtended by the Sun, the spectral power
per unit area reaching a point in the atmosphere from the Sun is much closer in magnitude
to that from the Earth: see Problem 3.3.)

If Bλ is integrated over all wavelengths, we obtain the black-body radiance∫ ∞

0
Bλ(T) dλ = σ

π
T4, (3.3)

where σ is the Stefan–Boltzmann constant. In terms of an integral over ln(λ), this gives

T−4
∫ ∞

−∞
λBλ(T) d(ln λ) = σ

π
.

This suggests plotting T−4λBλ against ln λ: the area under the resulting curve is then
independent of T . Curves of this kind are shown in Figure 3.2. Note that, with this
normalisation, there is little overlap between the black-body spectral radiances at 6000
and 288 K, which are mostly confined to wavelengths shorter and longer than λ = 4 μm,
respectively.

A black body is defined as a body that completely absorbs all radiation falling on it. It
can be shown that the radiation emitted by a black body is black-body radiation, as defined
above. The concept of a black body is an idealisation: a real body will emit less radiation
than this. The spectral emittance εν of a body is the ratio of the spectral radiance from that
body to the spectral radiance from a black body; therefore εν ≤ 1. It follows that a black
body emits the maximum possible amount of energy in each frequency interval, at a given
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Fig. 3.2 The black-body spectral radiance Bλ(T), multiplied by T−4λ, plotted against the logarithm of
wavelength λ, for T = 6000 and 288 K. The vertical dashed line at λ = 4 μm roughly separates
the solar radiation on the left from the thermal radiation on the right.

temperature. We can also define the spectral absorptance αν as the fraction of energy
per unit frequency interval falling on a body that is absorbed. Kirchhoff’s law states that
εν = αν ; that is, at a given temperature and frequency the spectral emittance of a body
equals its spectral absorptance.

3.1.2 Local thermodynamic equilibrium

The standard derivation of the Planck function (3.1) applies to an isothermal cavity con-
taining radiation, but not containing matter. On the other hand, statistical mechanics shows
that the energy levels of a material system (for example a gas) in equilibrium at temperature
T will be populated according to the Boltzmann distribution, when radiation is neglected.
That is, the numbers n1 and n2 of molecules in states of energy E1 and E2 and with statistical
weights (or degeneracies) g1 and g2, respectively, are in the ratio given by the Boltzmann
distribution

n1

n2
= g1

g2
exp

{−(E1 − E2)/(kBT)
}
. (3.4)

In the case of a gas, this equilibrium ratio is maintained by collisions between the gas
molecules.1

When matter and radiation are both contained in an isothermal cavity and the interaction
between the matter and radiation is sufficiently weak, then in thermodynamic equilibrium

1 For an ideal gas, these collisions must be infrequent; that is, the interaction between the molecules must be
weak. However, if equilibrium is to be maintained, some such interaction is essential. The necessity of a weak
interaction between different ‘aspects’ of a system for maintenance of equilibrium is a familiar one in statistical
mechanics; see Mandl (1988), page 51.
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the radiation will continue to satisfy Planck’s law and the matter will continue to satisfy the
Boltzmann distribution. The interaction between the matter and the radiation is essential
to bring about thermodynamic equilibrium between them, but it must not be so strong as
to lead to significant departures of the radiation from Planck’s law or of the matter from
the Boltzmann distribution.2 The interaction will be sufficiently weak, for a given pair of
energy levels, if the mean time between collisions for a given molecule, τc say (which is
inversely proportional to the pressure p), is much shorter than the lifetime for radiative
decay, τd say, for the given levels. This state of thermodynamic equilibrium will therefore
hold if the pressure is large enough, for a given transition between energy states.

The atmosphere does not have a uniform temperature, so we cannot regard it as being in
strict thermodynamic equilibrium. However, at high enough pressures, molecular collisions
are sufficiently rapid for the Boltzmann distribution (3.4) to hold for each small portion of
the atmosphere, given the local value of T . Such a portion of the atmosphere is said to be in
local thermodynamic equilibrium (LTE) with respect to the given energy states. We can
then, for example, use the Planck function (3.1) – which is derived under thermodynamic
equilibrium conditions – to represent the spectral radiance.

It can be shown that LTE applies to translational modes (those associated with molec-
ular kinetic energy and macroscopic thermal energy) below about 500 km altitude. For
the vibrational and rotational modes involved in the absorption and emission from most
radiatively active gases, LTE holds for pressures greater than about 0.1 hPa, corresponding
roughly to altitudes below about 60 km. Methods for calculating the spectral radiance when
LTE does not hold are complex and will not be discussed in this book.

3.2 The radiative-transfer equation

3.2.1 Radiometric quantities

Several different, but related, quantities are used in the description and measurement of
radiation. The most important are as follows.

• The spectral radiance (or monochromatic radiance) Lν(r, s) is the power per unit area,
per unit solid angle, per unit frequency interval in the neighbourhood of the frequency ν,
at a point r, in the direction of the unit vector s. It is measured in W m−2 steradian−1 Hz−1.
The spectral radiance can be visualised in terms of the photons emerging from a small
area �A with unit normal s, centred at a point r: see Figure 3.3. Consider those photons
whose momentum vectors lie within a cone of small solid angle �� centred on the
direction s and whose frequencies lie between ν and ν + �ν. Then Lν �A ���ν is the
energy transferred by these photons, per unit time, from ‘below ’ the area �A to ‘above’.
(Here ‘below’ means in the direction −s and ‘above’ means in the direction s.)

2 For an advanced treatment, see Landau and Lifshitz (1980), Chapters IV and V.
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Fig. 3.3 Illustrating the definition of spectral radiance; see the text. Although a cone is shown only
emerging from the point r, we must also consider parallel cones emerging from the other points
in the area �A.

We have already encountered a special case of the spectral radiance, for isotropic
black-body radiation in an isothermal cavity (Section 3.1.1), when Lν = Bν(T), the
Planck function; this depends only on the temperature of the cavity and is independent
of position and direction.

• The radiance L(r, s) is the power per unit area, per unit solid angle at a point r in the
direction of the unit vector s; in other words it is the integral of Lν over frequency:

L(r, s) =
∫ ∞

0
Lν(r, s) dν.

Its units are W m−2 steradian−1.
• The spectral irradiance (or monochromatic irradiance) Fν(r, n) is the power per unit

area, per unit frequency interval in the neighbourhood of the frequency ν, at a point r
through a surface of normal n; its units are W m−2 Hz−1. It is obtained from the spectral
radiance by integration over a hemisphere on one side of the surface:

Fν(r, n) =
∫

2π

Lν(r, s) n · s d�(s), (3.5)

where d�(s) is the element of solid angle in the direction s; see Figure 3.4. We therefore
integrate over all photons in the frequency interval that emerge into the region above the
surface.3 As with the Planck function, the spectral radiance and spectral irradiance can
alternatively be expressed per unit wavelength interval.

• The irradiance (or flux density) F(r, n) is the power per unit area at a point r through
a surface of normal n, i.e. the integral of Fν over frequency, and also the integral of the
radiance L over a hemisphere:

3 The angular integration is similar to that used in the kinetic theory of gases; indeed many of the geometric
concepts that apply to moving molecules in kinetic theory apply equally to photons, with the simplification that
the photons all have the same speed c, rather than a distribution of speeds.
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Fig. 3.4 Illustrating the calculation of the spectral irradiance by integrating the spectral radiance over the
hemisphere above the shaded horizontal surface. The scalar product n · s in equation (3.5) arises
from the projection of the unit area perpendicular to s in the direction n of the normal.

F(r, n) =
∫ ∞

0
Fν(r, n) dν =

∫
2π

L(r, s)n · s d�(s).

Its units are W m−2.

It must be borne in mind that the irradiance has a specific direction associated with it; for
example, if the surface in question (assumed for the present argument to be an imaginary,
rather than a material, surface) is horizontal and the normal n points upwards, then the
irradiance under consideration (denoted by F↑) is associated with upward-moving photons.
Conversely, the irradiance F↓ = F(r, −n) is associated with downward-moving photons.
If we require the net upward power per unit area, Fz say, then we must take the difference:

Fz = F↑ − F↓.

In terms of electromagnetic quantities, this net upward irradiance equals the vertical
component of the Poynting vector.

There is a simple relationship between the radiance and irradiance from an isothermal
plane surface, at temperature T , that emits black-body radiation. Since the black-body
radiation is isotropic, Lν = Bν(T) is independent of s and r, so the hemispheric integral is
straightforward. Equation (3.5) for the spectral irradiance becomes

Fν(r, n) =
∫

2π

Lνn · s d�(s) = 2πBν

∫ π/2

0
cos φ sin φ dφ = πBν(T), (3.6)

where φ is the angle between s and the normal n (see Figure 3.4) so that d� = 2π sin φ dφ,
since there is axisymmetry around the normal. Integrating over all ν we obtain the Stefan–
Boltzmann law for the irradiance

F(r, n) = π

∫ ∞

0
Bν(T) dν = σT4, (3.7)

using the frequency-integral analogue of equation (3.3).
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Fig. 3.5 A beam, or ‘pencil’, of radiation travelling a distance ds from surface A1 of unit area to a surface
A2. (Scattering of photons out of or into the beam is not indicated.) The area of A2 is slightly
greater than unity, owing to the divergence of photons into a solid angle �� from each point of
A1; see Figure 3.3. However, to leading order, the volume of the pencil is still given by
(unit area) × ds.

3.2.2 Extinction and emission

Consider a beam of radiation of unit cross-sectional area, moving in a small range of solid
angles �� about the direction s; see Figure 3.5. If the photons experience absorption or
scattering in a small distance ds along the beam, due to the presence of a radiatively active
gas,4 then the spectral radiance Lν will be reduced. The physics of the process is complex;
however, it may be summed up by Lambert’s law, which states that the fractional decrease
of the spectral radiance is proportional to the mass of absorbing or scattering material
encountered by the beam in a distance ds. Since the beam has unit cross-sectional area, this
mass is ρa ds, where ρa is the density of the radiatively active gas, so

dLν = −kν(s)ρa(s)Lν(s) ds. (3.8)

(The dependence of Lν on the direction vector s is omitted here for clarity.) The quantity
kν is called the extinction coefficient; it is the sum of an absorption coefficient aν and a
scattering coefficient sν , defined in an obvious manner in terms of the contributions to dLν

from absorption and scattering, respectively:

kν = aν + sν . (3.9)

The extinction coefficient kν generally depends on temperature and pressure, and can be
regarded as calculable from detailed quantum mechanics or as an empirical quantity, to
be derived from measurements. (Note that ρa is not generally the same as the total gas
density ρ.)

If the gas is also emitting photons of frequency ν, an extra term must be added to the right-
hand side of equation (3.8), to represent the additional power per unit area introduced into
the beam. This term will also be proportional to the mass ρa ds, so it is convenient to write
it as kνρaJν ds, where Jν(s) is called the source function. Including both extinction and

4 We refer to gases here, but the same considerations also apply to a gas containing a suspension of solid particles
or liquid droplets.
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emission we therefore obtain the radiative-transfer equation (also called Schwarzschild’s
equation)

dLν

ds
= −kνρa

(
Lν − Jν

)
. (3.10)

If kν , ρa and Jν are given as functions of distance s, a formal solution of the radiative-
transfer equation can be obtained as follows. First introduce the optical path χν , defined by

χν(s) =
∫ s

s0

kν(s′)ρa(s′) ds′, (3.11)

where s0 is the start of the path; then equation (3.10) can be written as

dLν

dχν

+ Lν = Jν . (3.12)

After multiplying by the integrating factor exp(χν) we can integrate equation (3.12) to get

Lνeχν =
∫

Jνeχν
′
dχ ′

ν + constant.

If the spectral radiance equals Lν0 at the point s0 then

Lν(s) =
∫ χν

0
Jν(χ

′)e−(χν−χ ′) dχ ′ + Lν0e−χν . (3.13)

Note that, in the absence of emission (Jν = 0), the spectral radiance falls exponentially,
decreasing by a factor of e over a distance corresponding to unit optical path. (This
exponential decay is known as Beer’s law.) A region is said to be optically thick at a
frequency ν if the total optical path χν through the region is much greater than 1, and
optically thin if the total optical path is much less than 1. A photon is likely to be absorbed
or scattered within an optically thick region, but is likely to traverse an optically thin region
without absorption or scattering.

As a simple example, suppose that the extinction coefficient kν and the density ρa of the
radiatively active gas are both constant and take s0 = 0. Then from equation (3.11) the
optical path is proportional to the distance s, χν = kνρas, so

Lν(s) = kνρa

∫ s

0
Jν(s′)e−kνρa(s−s′) ds′ + Lν0e−kνρas. (3.14)

The radiance Lν(s) reaching s thus has a simple interpretation, as follows. The second
term on the right-hand side of equation (3.14) represents the radiance at the starting point
s = 0, attenuated by an exponential factor due to extinction over the distance s, while the
integral represents the sum of contributions emitted from elements ds′ at different distances
s′ along the path, each attenuated by the factor exp[−kνρa(s − s′)] due to extinction over
the remaining distance s − s′. (See Figure 3.6.)

Under local thermodynamic equilibrium conditions (see Section 3.1.2), in the absence
of scattering, the source function equals the black-body spectral radiance, i.e. the Planck
function, (3.1). This can be shown by using Kirchhoff’s law (see Section 3.1.1), which
holds under LTE conditions, as follows. The radiance emitted from a mass ρa ds of gas in
the beam is kνρa ds Jν and the radiance absorbed is kνρa ds Lν ; cf. equation (3.10). Hence
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Fig. 3.6 Illustrating the terms in equation (3.14).

the spectral emittance, the ratio of the emitted radiance to the radiance emitted by a black
body, is εν = kνρa ds Jν/Bν . The spectral absorptance, the fraction of incident radiance that
is absorbed, is αν = kνρa ds Lν/Lν = kνρa ds, neglecting scattering. However, Kirchhoff’s
law states that εν = αν and hence Jν = Bν .

3.2.3 The diffuse approximation

In radiative calculations we can often assume that the properties of the atmosphere and the
radiation depend only on the vertical coordinate z.5 This is the plane-parallel atmosphere
assumption and we shall make it from now on. The net irradiance (taking account of
photons moving in opposite directions) is then vertical and equal to Fz(z), as defined in
Section 3.2.1. Calculation of the upward and downward irradiances involves the integration,
over the solid angle, of radiances such as that in equation (3.13), with the direction vector
s re-inserted. This integration, though conceptually straightforward, is quite complicated
in practice. However, a simple and surprisingly accurate alternative is to use the diffuse
approximation. This states that we can replace the radiative-transfer equation (3.12), for
calculating the spectral radiances Lν along a set of slanting downward paths (with Jν = Bν ,
assuming LTE conditions), by the single equation

dF↓
ν

dχ∗
ν

+ F↓
ν = πBν (3.15)

for the downward spectral irradiance F↓
ν along a vertical path, where

χ∗
ν ≈ 1.66χν . (3.16)

The quantity χν is the optical path measured downwards from the top of the atmosphere
and is called the optical depth; see equation (3.29). The quantity χ∗

ν is a scaled optical

5 An important exception is when horizontal inhomogeneities due to clouds are present.
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depth. The factor π on the right-hand side of equation (3.15) arises from the calculation
of the black-body irradiance, as in equation (3.6). A similar equation, but with a change in
sign of χ∗

ν , holds for the upward spectral irradiance; see equation (3.44a).

3.3 Basic spectroscopy of molecules

3.3.1 Vibrational and rotational states

It was mentioned in Section 3.1 that the absorption and emission of thermal photons depend
on energy differences between vibrationally or rotationally excited states of atmospheric
molecules. The detailed spectroscopy of atmospheric molecules is a highly complex subject,
well beyond the scope of this book. However, the basic principles are comparatively simple
and will be sketched out in this section. As an illustration, we consider the vibrational and
rotational states of a diatomic molecule, composed of an atom of mass m1 and an atom of
mass m2; see Figure 3.7.

The classical picture of the vibration of this molecule assumes that the atoms are bound
by a light ‘spring’, of spring constant K, that resists deviations of the distance x between
the atoms from its equilibrium value, x0 say. It is a straightforward exercise in classical
mechanics to show that the frequency of oscillation of the system is ν0, given by

2πν0 =
(

K
mr

)1/2
, where mr = m1m2

m1 + m2
.

The quantity mr is called the reduced mass. The quantum-mechanical theory of the
harmonic oscillator requires that we insert the potential function

V (x) = 1
2 K(x − x0)

2

for this system into Schrödinger’s equation; there results an infinite set of energy levels,
given by

Ev = hν0

(
v + 1

2

)
, where v = 0, 1, 2, . . . (3.17)

Here v is the vibrational quantum number and takes integer values. The levels are
non-degenerate; that is, there is only one state corresponding to each energy value Ev .

The absorption and emission of photons occurs when there is a time-dependent interaction
between a molecule and an electromagnetic field, described quantum-mechanically by an
interaction Hamiltonian. For the strongest vibrational interactions this Hamiltonian takes
the form −p · E(t), where p is the electric dipole moment of the molecule and E is the

Fig. 3.7 A simple representation of a diatomic molecule, composed of atoms of masses m1 and m2,
separated by a distance x.
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electric field in the neighbourhood of the molecule. For such a ‘dipole transition’ to occur,
the dipole moment must change between the initial and final state. The quantum-mechanical
selection rule for a diatomic molecule states that, in a dipole transition from one vibrational
state to another, v can only increase or decrease by unity (�v = ±1), corresponding to an
energy change �E = ±hν0.

We now consider the rotation of the same diatomic molecule, ignoring vibrations so that
x = x0. Classically, the molecule has a moment of inertia I = mrx0 and can rotate with any
angular momentum. The quantum-mechanical analysis of the system is similar to that for
the angular structure of the hydrogen atom, for example. It is found that the only allowed
values of the squared angular momentum are �

2J(J+1) where J is an integer, the rotational
quantum number, and � = h/(2π). The corresponding energy levels are given by

EJ = 1
2I

J(J + 1)�2, where J = 0, 1, 2, . . . ; (3.18)

these levels are degenerate, with 2J + 1 states corresponding to each energy value EJ .
Rotational dipole transitions can occur only if the molecule has a nonzero permanent electric
dipole moment. The selection rule in this case is �J = ±1.

Equations (3.17) and (3.18) illustrate the fact that, when quantum mechanics is taken into
account, only discrete (quantised) energy levels are allowed for vibrational and rotational
states of the simple diatomic molecule. Furthermore, transitions between these quantised
levels, associated with absorption or emission of photons, must lead to energy differences
�E and hence photon frequencies ν = �E/h that are also discrete in nature.

The treatment of molecules with more than two atoms is more complex; however, for
future reference we mention that the vibrational normal modes of linear, symmetric triatomic
molecules (such as carbon dioxide) and certain triatomic molecules that are not linear (such
as water vapour and ozone) take fairly simple forms, as illustrated in Figure 3.8. These
normal modes are designated by the labels ν1, ν2 and ν3, as shown, and corresponding
vibrational quantum numbers v1, v2 and v3 are used to represent the different excitations
of each mode.

Wavelengths hc/�Ev associated with transitions between pure vibrational states are
typically between about 1 and 20 μm and hence mostly in the thermal infra-red. Wave-
lengths hc/�EJ associated with transitions between pure rotational states would be of order
102–104 μm, in the far infra-red and microwave regions. In general, however, both vibra-
tional and rotational energies change during a transition. The fact that the rotational energy
differences are so much smaller than the vibrational energy differences means that, in terms
of atmospheric spectra, rotational effects lead to ‘fine-structure splitting’ of vibrational
spectral lines. Transitions from rotational sub-levels of one vibrational level to rotational
sub-levels of another vibrational level therefore give rise to complex vibration–rotation
spectral bands in the infra-red.

A very important consequence of the results stated above is that dipole transitions
cannot occur for diatomic molecules with identical nuclei, such as the two most prevalent
atmospheric gases N2 and O2. Symmetric molecules of this type have zero dipole moments
and hence cannot interact directly with thermal infra-red radiation, through either vibrational
or rotational transitions. The same is true of transitions involving only excitations of the
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Fig. 3.8 Schematic illustration of vibrational normal modes of triatomic molecules. (a) A linear triatomic
molecule such as CO2, showing the symmetric ν1 and ν2 modes and the asymmetric ν3 mode.
(Note that two independent forms of the ν2 mode occur, one with displacements in the plane of
the paper, as shown, and one with displacements perpendicular to the plane of the paper.) (b) A
non-linear triatomic molecule such as H2O. Adapted from Herzberg (1945).

‘symmetric stretch’ ν1 mode of CO2 (see Figure 3.8(a)), which also has a zero dipole
moment. However, transitions involving triatomic modes such as the others illustrated in
Figure 3.8 do lead to changes in electric dipole moment and can therefore interact strongly
with thermal infra-red radiation, subject to appropriate selection rules. This explains why
the major species N2 and O2 are effectively transparent to thermal infrared radiation, and
why minor species6 such as CO2, H2O and O3 act as ‘greenhouse gases’ and play a dominant
role in the Earth’s radiation balance and hence in determining the climate: see Chapter 8.

Wavelengths associated with transitions between electronically excited states are gen-
erally less than 1 μm and lie in the ultra-violet and visible region. Thus, in the case of
solar photons, we must also consider the electronically excited states of molecules. This
again is a complex subject, but it can be described qualitatively in the case of a diatomic
molecule, by using an energy diagram, such as Figure 3.9. The lower curved line shows the
potential energy of the ground state versus the internuclear distance. It takes the form of
a potential well resulting from electric repulsion at short distances and attraction at larger
distances. The potential energy becomes constant at large enough distances, corresponding
to dissociation of the molecule AB into two ground-state atoms, A and B. Within the

6 Minor species are gases that are present in much smaller quantities than molecular nitrogen (N2) and molecular
oxygen (O2); see Section 2.2 and Table 2.1.
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Fig. 3.9 Schematic energy diagram for a diatomic molecule. See text for details.

potential well there are a number of vibrational energy levels, denoted by the equispaced
horizontal lines. (Near the bottom of the well, the potential energy varies approximately
quadratically with distance, so that the simple theory leading to equation (3.17) applies
there.) A similar potential well applies to the first electronically excited state; however, in
this case dissociation leads to one ground-state atom (A say) and one electronically excited
atom (B∗ say).

Several transitions are shown in Figure 3.9 by vertical arrows. These are (1) the absorption
of a photon, giving rise to an infra-red transition from one vibrational level to another
vibrational level in the ground-state molecule; (2) photo-dissociation to two ground-state
atoms; (3) absorption giving rise to a transition from a vibrational level of the ground state to
a vibrational level in the excited state; and (4) photo-dissociation to one ground-state atom
and one excited atom. Note that transitions (1) and (3) lead to discrete energy changes �E
whereas (2) and (4) lead to continuous energy changes.

3.3.2 Line shapes

In this section we again neglect scattering, so that only absorption contributes to the
extinction coefficient kν , defined in Section 3.2.2. The implication of the simple pictures of
vibrational and rotational transitions given in the previous section is that kν can generally
be expected to vanish, except at certain discrete frequencies νn associated with transitions,
for which kν is large; these frequencies correspond to spectral lines. This suggests a model

kν =
∑

n
Snδ(ν − νn), (3.19)

where the Sn are constants, called the line strengths, and δ(·) is the Dirac delta function.
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Fig. 3.10 A schematic diagram of some broadened spectral lines centred at four frequencies, ν1, ν2, ν3 and
ν4. Unbroadened lines would consist of sharp peaks at these frequencies, as indicated by the
vertical lines.

However, this model of sharp, delta-function, peaks in the extinction coefficient is an
idealisation. In practice several physical effects lead to a broadening of the sharp peaks (see
Figure 3.10), so that equation (3.19) is replaced by

kν =
∑

n
Sn fn(ν − νn),

where the fn are line-shape functions, each normalised such that∫ ∞

−∞
fn(ν − νn) dν = 1. (3.20)

There are two main cases.

(a) Collisional or natural broadening

The energy levels have finite lifetimes for one of two reasons:

• there is a collisional lifetime τc (see Section 3.1.2);
• excited states have a natural lifetime τn with respect to spontaneous decay.

The finite lifetimes imply that the energy levels are not precisely defined, but rather have a
spread of values of order �/τc or �/τn, respectively, according to Heisenberg’s Uncertainty
Principle. There is thus a spread of values of each �E and hence of each transition
frequency νn.

In the case of collisional broadening we obtain the Lorentz line shape, of the form

f (ν − νn) =
(γL

π

) 1
(ν − νn)2 + γ 2

L
, (3.21)
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where γL = (2πτc)
−1 is the half-width at half maximum of the line. Note that f satisfies

equation (3.20). The derivation of equation (3.21) is quite complicated; the proof is omitted
from this book, but is given in advanced texts on quantum mechanics or spectroscopy.

We can get τc and hence γL from kinetic theory, in terms of the mean molecular velocity
(which is proportional to T1/2), number density (proportional to p/T) and collision cross-
section, giving the following temperature and pressure dependence of γL:

γL ∝ p T−1/2. (3.22)

A similar calculation applies to natural broadening, but in this case γL = (2πτn)
−1. In the

infra-red, the corresponding line width is much less than that due to collisional broadening
and than that due to the Doppler broadening discussed below, so natural broadening can
usually be neglected. However, natural broadening can be important in the ultra-violet.

(b) Doppler broadening

The Doppler shift of a spectral line at a frequency ν = ν0 due to a molecular velocity u of
the emitter away from the observer is ν − ν0 = (u/c)ν0, assuming that u � c. However,
the velocities follow the Maxwell–Boltzmann distribution; the probability that the speed of
a molecule lies between u and u + du is P(u) du, where

P(u) =
( m

2πkT

)1/2
exp

(
− mu2

2kBT

)

and m is the molecular mass. The spectral line shape, rather than being a delta function,
becomes the convolution of P(u) with a delta function:∫ ∞

−∞
P(u)δ

(
ν − ν0 − u

c
ν0

)
du ∝ exp

(
−mc2(ν − ν0)

2

2kBTν2
0

)
.

We then get the Doppler line shape

kν = S
γD

√
π

exp

(
− (ν − ν0)

2

γ 2
D

)
,

on normalising such that S = ∫ ∞
−∞ kν dν, where

γD = ν0

c

(
2kBT

m

)1/2
.

The half-width at half maximum is γD(ln 2)1/2, and is proportional to T1/2 but independent
of p.

The Lorentz and Doppler line shapes are shown in Figure 3.11; also shown is the Voigt
line shape, which applies when both collisional and Doppler broadening are important.
The fact that γL is proportional to pressure (see equation (3.22)) means that collisional
broadening dominates at low altitudes (<30 km), in the infra-red. Higher up, Doppler
broadening becomes significant in the visible and ultra-violet.
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Fig. 3.11 Illustrating the Lorentz (solid), Doppler (dashed) and Voigt (dotted) line shapes as a function of
x = (ν − ν0)/α, where α is the half-width at half maximum appropriate for each shape. The
curves are normalised such that the area under each is the same.

3.4 Transmittance

An important quantity that arises in the solution of the radiative-transfer equation in
Section 3.2.2 and the calculation of heating rates in Section 3.6 is the fraction of the
spectral radiance leaving one point that arrives at another point. This fraction is represented
by the transmittance or transmission function. For a parallel beam leaving point s1 and
arriving at point s2 (or vice versa), the spectral transmittance is

Tν(s1, s2) = exp
(

−
∣∣∣∣
∫ s2

s1

kν(s)ρa(s) ds
∣∣∣∣
)

= exp[−∣∣χν(s2) − χν(s1)
∣∣]; (3.23)

cf. equations (3.11) and (3.13). The modulus signs express the fact that the fraction is
independent of whether the radiation goes from s1 to s2 or from s2 to s1 and ensure that the
fraction is ≤1. If scattering is neglected, the extinction coefficient kν depends on s through
its temperature and pressure dependences. However, if the variation of kν along the path
can be ignored, such as, for example, for measurements under laboratory conditions at
fixed p and T , then equation (3.23) gives

Tν(s1, s2) = exp[−kν(p, T)ua(s1, s2)], (3.24)

where

ua(s1, s2) =
∣∣∣∣
∫ s2

s1

ρa(s) ds
∣∣∣∣ .

Here ua is the mass of absorber gas, per unit transverse cross-sectional area, in the path. If
the absorber density is also constant along the path, then ua = ρal, where l is the length of
the path.
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Fig. 3.12 The transmittance Tν and absorptance Aν as functions of x = (ν − ν0)/γL for a Lorentz line, for
three values of the quantity q = uaS/(γLπ): q = 10, solid curve; q = 1, dashed curve; and q = 0.1,
dotted curve.

Figure 3.12 shows examples of the transmittance Tν as a function of ν for three values
of q = uaS/(γLπ) for a Lorentz line at fixed p and T . Also indicated is the absorptance
Aν = 1−Tν . Note that, for large amounts of absorber (q � 1, solid curve) the transmittance
is effectively zero near the line centre, whereas for small amounts of absorber (q � 1,
dotted curve) the transmittance is close to 1 for all frequencies.

It is often useful to average the transmittance over a spectral band, of width �νr, say,
perhaps containing many spectral lines, to get the band transmittance

T r = 1
�νr

∫
�νr

Tν dν. (3.25)

Two other useful quantities are the band absorptance

Ar = 1 − T r,

and the equivalent width or integrated absorptance

Wr =
∫

�νr

(1 − Tν) dν = �νr (1 − T r) = �νr Ar. (3.26)

If the integration is over a single broadened spectral line, then Wr represents the width of a
rectangular line shape within which total absorption takes place, which has the same area
as the actual line.

Note that, for small amounts of absorber (again at fixed p and T along the path), we have
Tν = e−kνua ≈ 1 − kνua, so that

Wr ≈
∫

�νr

kνua dν = Sua, (3.27)

using S = ∫
�νr

kν dν. This is called the weak-line approximation. At the opposite extreme,
for large amounts of absorber, the equivalent width can be calculated explicitly for a single
Lorentz or Doppler line shape, assuming that kν is constant, to obtain the strong-line
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approximations W ≈ 2(SuaγL)1/2 for a Lorentz line and W ≈ 2γD{ln[Sua/(γD
√

π)]}1/2

for a Doppler line; see Problems 3.5 and 3.7.

3.5 Absorption by atmospheric gases

3.5.1 The solar spectrum

Figure 3.13 shows the spectral irradiance of solar radiation at the top of the atmosphere
(TOA) and at sea level, compared with the black-body spectral irradiance at a typical solar

Fig. 3.13 The irradiance spectrum of solar radiation at the top of the atmosphere (solid line) and at sea
level (shaded), compared with the black-body irradiance spectrum (dashed line), given by Bλ(T)

times the solid angle subtended by the Sun, for T = 6000 K. Gases responsible for the most
prominent absorption features are indicated. The approximate wavelength regions of ultra-violet,
visible and near infra-red radiation are also shown. Plotted using data from the ASTM G173-03
Reference Spectra, see http://rredc.nrel.gov/solar/spectra/am1.5/.

http://rredc.nrel.gov/solar/spectra/am1.5/
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photospheric temperature of 6000 K. It is seen that the TOA irradiance is fairly close to
this black-body irradiance at most wavelengths. However, absorption and scattering in the
atmosphere cause significant differences between the TOA irradiance and the sea-level
irradiance, with especially large deviations (apparent in the sharp dips in the sea-level
curve) at certain wavelengths, which are identified with particular absorbing gases, notably
ozone (O3) in the ultra-violet and visible, and carbon dioxide (CO2) and water vapour
(H2O) in the infra-red. (The ‘red bands’ of O2, on the boundary between the visible and the
infra-red, are associated with electronic transitions.) We investigate atmospheric absorption
in more detail in the next two sections.

3.5.2 Infra-red absorption

The absorption of infra-red radiation by the six most significant gaseous absorbers is
conveniently summarised in Figure 3.14. This figure shows the transmittance for a vertical
beam passing through the whole atmosphere, as a function of wavelength. The gases
shown are all minor constituents, and all but ozone (O3) are concentrated mainly in the
troposphere. (As mentioned in Section 3.3.1, the major constituents, N2 and O2, are not
strongly radiatively active in the infra-red.) Since, on the scale of the diagram, much of
the fine structure associated with individual spectral lines is not shown, the diagram can
be regarded as plots of the band transmittance T r (equal to 1 − Ar, where Ar is the band
absorptance) between the top of the atmosphere and the ground, corresponding to band
widths �νr associated with wavelength differences ∼ 0.1 μm.

The bottom panel of Figure 3.14 shows the total long-wave absorptance due to all gases.
There is a broad region from about 8 to 13 μm, called the atmospheric window, within
which absorption is weak, except for a band near 9.6 μm associated with O3.

Water vapour (H2O) absorbs strongly over a wide band of wavelengths near 6.3 μm
(associated with transitions involving the ν2 vibrational mode: see Figure 3.8) and over a
narrower band near 2.7 μm (associated with the ν1 and ν3 vibrational modes). At longer
wavelengths, especially beyond 16 μm, rotational transitions of H2O become important,
leading to strong absorption.

Carbon dioxide (CO2) is a strong absorber in a broad band near 15 μm, associated with
the vibrational ν2 ‘bending’ mode, and in a narrower band near 4.3 μm, associated with the
ν3 ‘asymmetric stretching’ mode. (The band near 2.7 μm has a more complex origin.)

Ozone (O3) absorbs strongly near 9.6 μm (associated with the ν1 and ν3 vibrational
modes), in the atmospheric window. Since the other gases do not absorb significantly in
this spectral region, ozone (which is mainly concentrated in the stratosphere) can therefore
exchange radiation with the lower atmosphere; see Section 3.6.4.

Figure 3.14 gives information on the absorption of infra-red radiation over the total
depth of the atmosphere, but not directly about the way in which the absorption varies
with altitude. Moreover, it must be remembered that atmospheric gases also emit infra-
red radiation and that this emission also varies with altitude. The vertical profiles of the
absorption and emission are required in the calculation of the resulting heating and cooling;
this is discussed in Section 3.6.3.
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Fig. 3.14 Infra-red absorption spectra for six strongly absorbing gases and for the six gases combined, for a
vertical beam passing through the atmosphere, in the absence of clouds. Drawn from data
supplied by Dr A. Dudhia.

3.5.3 Ultra-violet absorption

In the ultra-violet, the main absorbers are molecular oxygen (O2) and ozone. Absorp-
tion at these wavelengths is often depicted in terms of the absorption cross-section
σν , which is equal to the absorption coefficient aν times the molecular mass. Unlike
in the infra-red, we must take account of electronic transitions, as well as vibrational
and rotational transitions, when considering absorption at discrete wavelengths; moreover,
photo-dissociation and photo-ionisation (see Section 3.1) lead to important continuum
absorption, i.e. absorption over a continuous range of wavelengths, rather than at discrete
wavelengths.

The absorption cross-section for O2 (Figure 3.15) has large values due to ionisation
at wavelengths below 100 nm; in the range 100–130 nm there are irregular bands of
unknown origin. The Schumann–Runge continuum, in the range 130–175 nm, is due
to the dissociation O2 → O(3P) + O(1D), in which one oxygen atom remains in the ground
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Fig. 3.15 General shape of the absorption cross-section as a function of wavelength for O2. Adapted from
Figure 4.30 of Brasseur and Solomon (2005).

Fig. 3.16 The absorption cross-section as a function of wavelength for O3. Details of the fine structure of the
Huggins band have been suppressed. In the Huggins band the solid line corresponds to a
temperature of 203 K and the dashed line to a temperature of 273 K.

‘triplet-P’ state and the other goes to the excited ‘singlet-D’ state. The Schumann–Runge
bands, in the range 175–200 nm, are associated with an electronic transition and superim-
posed vibrational transitions. The Herzberg continuum is found in the range 200–242 nm. At
242 nm dissociation into two ground-state oxygen atoms occurs; although this is an insignif-
icant absorption feature, it is very important in the formation of ozone (see Section 6.5.1). A
further electronic transition gives rise to the weak Herzberg bands in the range 242–260 nm.

The ozone absorption cross-section (Figure 3.16) exhibits two continua in the ultra-violet
and also one in the visible and near infra-red, all due to photo-dissociation: the Hartley
band in the range 200–310 nm, the Huggins bands in the range 310–350 nm and (in the
visible and near infra-red) the Chappuis bands in the range 400–850 nm. Although the
absorption cross-section for the Chappuis bands is much smaller than those for the Hartley
and Huggins bands, the Chappuis bands are important since they occur near the peak of
the solar spectrum and absorb in the troposphere and lower stratosphere. (The absorption
features due to the Hartley, Huggins and Chappuis bands are indicated by the O3 symbols
in Figure 3.13.) Shorter-wavelength (more energetic) radiation is almost absent at these
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Fig. 3.17 The altitude of unit optical depth for vertical solar radiation. The principal absorption bands are
shown. Adapted from Meier (1991); an early version of this figure appeared in Herzberg (1965).
Figure courtesy of Dr J. Lean and Dr R. Meier.

levels, since it is mostly absorbed higher up. This is demonstrated by Figure 3.17, which
shows the altitude of unit optical depth (the peak of the Chapman layer in absorption; see
Figure 3.18) as a function of wavelength.

The heating of the atmosphere due to absorption of ultra-violet radiation is discussed in
Section 3.6.2. In contrast to the infra-red, there is no significant emission from atmospheric
gases in the ultra-violet, since the black-body spectral radiance at terrestrial temperatures
is so small there; see Figures 3.1 and 3.2.

3.6 Heating rates

3.6.1 Basic ideas

One of the main goals of radiative calculations is to obtain radiative-heating rates throughout
the atmosphere. For this one requires knowledge of the heating due to absorption of solar
(short-wave) photons and the heating and cooling due to absorption and emission of thermal
(long-wave) photons. In this section we consider some basic ideas; these are applied to
solar and thermal radiation in later sections.

Consider a horizontal slab of atmosphere, of horizontal area A, at height z and of
thickness �z, and make the plane-parallel atmosphere assumption. The net upward power
entering the bottom of the slab is AFz(z) and the net upward power emerging at the
top is AFz(z + �z). The loss of radiative power within the volume A �z of the slab is
therefore A [Fz(z) − Fz(z + �z)] ≈ −(A�z) dFz/dz. This loss of radiative power implies
that radiative diabatic heating (see Sections 2.4 and 4.10) of the slab is occurring at a rate
of −dFz/dz per unit volume or
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Q = − 1
ρ(z)

dFz
dz

(3.28)

per unit mass, where ρ is the density of air. The units of Q are W kg−1; often the quantity
Q/cp arises in calculations of the dynamical effects of radiative heating, where cp is the
specific heat capacity at constant pressure (cf. equation (4.35)), and this quantity has units
K s−1. Since F↑ and F↓ both involve integration of spectral irradiances over frequency, Fz
(= F↑ − F↓) and Q also comprise contributions from different frequency bands.

3.6.2 Short-wave heating

Consider the diabatic heating rate per unit volume, ρQsw
ν , produced by absorption of short-

wave solar radiation of frequency ν by a gas of density ρa(z) and extinction coefficient kν(z);
scattering will be neglected. Assuming that the Sun is directly overhead, the appropriate
optical path for each frequency is the optical depth, measured vertically downwards from
the top of the atmosphere (taken to be z = ∞),

χν(z) =
∫ ∞

z
kν(z′)ρa(z′) dz′. (3.29)

(For the direct solar beam we do not integrate over solid angle, so the diffuse approximation
of Section 3.2.3 is not made.) By analogy with the second term of equation (3.13), the
downward irradiance of the solar radiation is given by

F↓
ν (z) = F↓

ν∞e−χν(z), (3.30)

where F↓
ν∞ is the downward solar irradiance at the top of the atmosphere and the exponential

term e−χν(z) equals the transmittance Tν(z, ∞) between the top of the atmosphere and height
z. Since scattering is neglected, the upward solar irradiance F↑

ν must be zero and the net
vertical irradiance at frequency ν is

Fzν(z) = −F↓
ν∞e−χν(z). (3.31)

The contribution to the heating rate per unit volume from this frequency is therefore

ρQsw
ν = d

dz

(
F↓

ν∞e−χν(z)
)

= F↓
ν∞

(
−dχν

dz

)
e−χν(z) = F↓

ν∞kν(z)ρa(z)e−χν(z).

Suppose now that the extinction coefficient kν is independent of z and that the density of
the absorber decays exponentially with height, ρa(z) = ρa(0)e−z/Ha , where Ha is constant.
Then the integral in equation (3.29) can be evaluated explicitly, giving

χν(z) = Hakνρa(0)e−z/Ha = χν(0)e−z/Ha ;

this shows how the optical depth increases as the solar radiation penetrates downwards, i.e.
as z decreases. Substitution into equation (3.31) then gives the vertical irradiance

Fzν = −F↓
ν∞ exp

[−χν(0)e−z/Ha
]
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Fig. 3.18 Vertical profiles of the short-wave volume heating rate, ρQsw
ν (z) (solid line), the negative of the

vertical irradiance, −Fzν(z) (dashed line) and the absorber density ρa(z) (dotted line), for solar
radiation at frequency ν in the simple example described in the text. The horizontal scales are
arbitrary. The left-hand ordinate shows the height z, divided by Ha; the right-hand ordinate shows
the optical depth, χν(z). The optical depth of the ground z = 0 at frequency ν is arbitrarily chosen
to be 3. The Sun is taken to be overhead. The absorber gas has a constant extinction coefficient
and an exponentially decaying density ρa ∝ exp(−z/Ha). Note that, in this example, the optical
depth has the same exponential variation as the absorber density.

and differentiation gives the monochromatic volume heating rate,

ρQsw
ν (z) = F↓

ν∞kνρa(0) exp
(

− z
Ha

− χν(0)e−z/Ha

)
. (3.32)

Figure 3.18 shows the variation of the optical depth χν , the vertical irradiance Fzν and
the volume heating rate ρQsw

ν , as functions of height in this simple example; note that
the volume heating rate has a broad single peak. Differentiation of equation (3.32) with
respect to z shows that ρQsw

ν has a maximum at the height where χν(z) = 1, that is, the
height where the optical depth at frequency ν equals unity. (We assume that the absorber is
sufficiently ‘optically thick’ for this level to occur above the ground.)

A vertical structure of the type given by equation (3.32) is said to exhibit a Chapman
layer. The peaked shape of the Chapman layer in the heating rate can be interpreted as
follows. At high levels, above the peak, there is a large vertical irradiance (since little
absorption of the solar beam has yet occurred), but few absorber molecules; at low levels,
below the peak, there is a small vertical irradiance (since much absorption has occurred)
but many absorber molecules. In each case the heating rate is small. However, near the
level of unit optical depth both the irradiance and the absorber density are significant and
so the heating rate is comparatively large. Chapman layers also occur in other processes
determined primarily by the absorption of radiation; an example is the photo-dissociation
that contributes to the formation of the ‘ozone layer’; see Section 6.4.
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3.6.3 Long-wave heating and cooling

We now consider the effects of thermal (long-wave) photons, allowing for both downward
and upward paths. It can be shown, by solving the radiative transfer equation and integrating
over solid angle, that the upward thermal irradiance at frequency ν and height z is

F↑
ν (z) = π

∫ z

0
Bν(z′)∂T

∗
ν (z′, z)
∂z′ dz′ + πBν(0)T ∗

ν (0, z). (3.33)

Here T ∗
ν (z′, z) is the spectral transmittance, averaged over the upward hemisphere to take

account of all slanting paths between heights z′ and z, and Bν(0) is the Planck function
evaluated at the temperature of the Earth’s surface. The assumption of LTE has been made,
so that the source function Jν = Bν , and the Earth’s surface has been assumed to radiate as
a black body. Similarly, the downward irradiance is

F↓
ν (z) = −π

∫ ∞

z
Bν(z′)∂T

∗
ν (z′, z)
∂z′ dz′;

there is no ‘boundary’ term here since the downward thermal irradiance at the top of the
atmosphere is zero.

The net upward long-wave spectral irradiance is Fzν(z) = F↑
ν (z) − F↓

ν (z) and from
this the net long-wave diabatic heating rate per unit mass, Qlw

ν , can be calculated using
equation (3.28). The resulting expression for Qlw

ν is quite complicated, but has a simple
physical interpretation: namely, the net heating or cooling at a given level is due to
the difference between the energy gained per unit time by absorption of photons from
neighbouring levels and the Earth’s surface, and the energy lost per unit time by emission
of photons to neighbouring levels, the Earth’s surface and space.

These heating and cooling terms can also be obtained directly. Consider for example the
rate of loss of energy by a horizontal slab of atmosphere of thickness �z and horizontal area
A at height z by emission of photons to space – the cooling-to-space term. The derivation
of the radiative-transfer equation (3.10) shows that the spectral power emitted in a vertical
direction from this slab is kνρaJνA �z, where Jν is the source function, equal to Bν under
LTE, as above. The fraction of this power that escapes to space is given by the transmittance
Tν(z, ∞) = exp(− ∫ ∞

z kνρa dz′). Noting that

∂Tν(z, ∞)

∂z
= kν(z)ρa(z)Tν(z, ∞),

we find that the power escaping to space from the slab in a purely vertical beam is

Bν(z)
∂Tν(z, ∞)

∂z
A �z.

Now, integrating over all slanting paths as above and replacing Tν by T ∗
ν , we obtain a

contribution to the heating rate per unit mass

Qcts
ν (z) = −πBν(z)

ρ(z)
∂T ∗

ν (z, ∞)

∂z
. (3.34)
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The factor π in this equation comes from integration over the upward hemisphere and
the minus sign from the fact that the power loss to space implies a negative heating at
height z. The other contributions to the heating rate at height z can be calculated in similar,
but more complicated, ways; these must include the heating of the slab due to absorption of
photons emitted at other levels. A useful simplification for some purposes is the cooling-
to-space approximation, in which the loss of photon energy to space dominates the other
contributions; therefore, under this approximation, Qlw

ν ≈ Qcts
ν .

All gases that absorb and emit at frequency ν must in principle be included in T ∗
ν .

Then Qlw
ν (z) must be integrated over all relevant frequencies to obtain the total long-wave

cooling Qlw(z).

3.6.4 Net radiative heating rates

The short-wave and long-wave contributions to the diabatic heating rate Q can be computed
using the principles described in the two previous sections, together with information on the
atmospheric temperature structure and the concentration and spectroscopic characteristics
of absorber gases. In this section we summarise the basic results of such computations.

Figure 3.19 shows the vertical profiles of the global-mean short-wave heating rate Qsw/cp
and the long-wave cooling rate −Qlw/cp, in convenient units of K day−1. The corresponding
profiles of heating and cooling due to the most important atmospheric gases are also shown.
It is clear that the total heating is approximately equal to the total cooling over much of the

Fig. 3.19 Global-mean vertical profiles of the short-wave heating rate and the long-wave cooling rate, in
K day−1, including contributions from individual gases. Adapted from London (1980).
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profile, except in the troposphere and above about 90 km. In the global mean, the middle
atmosphere is therefore close to being in radiative equilibrium.

Below 80 km the short-wave heating rate is dominated by a Chapman-layer-like structure,
centred near 50 km, due to absorption of solar radiation by ozone. The peak of the heating
rate, at over 10 K day−1, lies above the maxima both in the ozone density (near 22 km)
and in the ozone mixing ratio (near 37 km). (The fact that this peak is above the maximum
ozone density is consistent with Figure 3.18 and is explained qualitatively by the argument
at the end of Section 3.6.2.) Below 15 km, in the troposphere, the main contribution to the
heating rate is from water vapour, at about 1 K day−1. Heating due to absorption by ozone
and molecular oxygen is important between 80 and 100 km.

The peak in long-wave cooling near 50 km has significant contributions due to carbon
dioxide and ozone, both cooling to space. The dominant wavelength bands involved are
15 μm for CO2 and 9.6 μm for O3. A small amount of long-wave heating appears near
20 km, in the lower stratosphere, because of absorption by ozone of upwelling radiation
from the troposphere at wavelengths near 9.6 μm, in the atmospheric window. Tropospheric
cooling is dominated by water vapour, at about 2 K day−1.

Figure 3.19 omits complications due to clouds and aerosols. Furthermore, the approx-
imate radiative equilibrium in the global mean does not apply to individual latitudes and
seasons. For example, in the winter stratosphere and the summer upper mesosphere there
are big differences between Qsw and −Qlw. In such regions dynamical heat transport is also
significant; see Chapters 4 and 5.

It must be emphasised that the net radiative heating rate Q = Qsw + Qlw should not be
thought of as a pre-ordained heating, to which the atmospheric temperature and wind fields
respond. One reason is that Q itself depends strongly on the temperature, especially through
Qlw. A highly simplified, but nevertheless illuminating, model is to regard Q at a point r as
a function of the local value of T and possibly of other variables. In radiative equilibrium
Q = 0 by definition. Suppose that the corresponding radiative-equilibrium temperature
field is Tr(r); then Q(Tr(r)) = 0. If now the temperature deviates slightly from radiative
equilibrium, T = Tr + δT , say, the net heating rate will also differ from zero:

Q(Tr + δT) ≈ Q(Tr) + δT
∂Q
∂T

∣∣∣
T=Tr

= δT
∂Q
∂T

∣∣∣
T=Tr

= −cp
δT
τr

(3.35)

say, since Q(Tr) = 0, where τr = −cp(∂Q/∂T |T=Tr)
−1. The net radiative heating rate

is therefore proportional and opposite in sign to the deviation of the actual temperature
from the radiative-equilibrium temperature. Equation (3.35) is one form of the Newtonian
cooling approximation and the coefficient τr (which is positive in practice) is the radiative
relaxation time. In this simple model (and in more realistic models) there is a kind
of ‘radiative spring’, which tries to pull the temperature towards radiative equilibrium.
This spring is opposed by other physical processes, especially dynamically induced heat
transport that drives the atmosphere away from radiative equilibrium and thus forces the
net radiative heating Q to be non-zero. In this sense we can regard the dynamics as driving
the net radiative heating, rather than the other way round; see also Section 9.5.2.
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3.7 The greenhouse effect revisited

In Section 1.3 we introduced some simple ideas concerning the greenhouse effect, by
which radiation-absorbing gases in the atmosphere raise the surface temperature above the
value that would occur if they were not present. We considered there a highly idealised
atmosphere, consisting of a single homogeneous, isothermal layer in radiative equilibrium.
In the present section we consider two models of a non-isothermal atmosphere, again
assuming radiative equilibrium. The first model includes two homogeneous, isothermal
atmospheric layers: an optically thin stratosphere on top of a troposphere. The second
model uses some of the physics developed earlier in this chapter to study an inhomogeneous
atmosphere in which the temperature varies continuously with height. It must be emphasised
that these models are still very idealised; in particular they assume that heat transfer is by
radiative processes only, thereby neglecting the heat transfer by fluid motions that was
mentioned at the end of the previous section and that is an important feature of the real
atmosphere. Such heat transfer can be brought about by processes such as convection and
baroclinic waves (see Section 5.7) and may include latent heat effects.

3.7.1 Two-layer atmosphere in radiative equilibrium, including an
optically thin stratosphere

This model is an extension of the single-layer model considered in Section 1.3.1. It includes
two atmospheric layers: the lower layer, at temperature Ttrop, mimics the troposphere, and
has transmittances Tlw in the infra-red and Tsw in the short-wave region, and emittance
1 − Tlw in the infra-red, as in Section 1.3.1. The upper layer, at temperature Tstrat, crudely
mimics the stratosphere and is assumed to be transparent to solar (short wave) radiation and
optically thin in the infra-red; its thermal (i.e. infra-red or long wave) absorptance is taken
as ε � 1.7 By Kirchhoff’s law (see Section 3.1.1) the stratospheric infra-red emittance is
also ε; its infra-red transmittance is 1 − ε. The ground, at temperature Tg, is assumed to
emit as a black body, and the whole system is assumed to be in radiative equilibrium.

As in Section 1.3.1 the unreflected incoming solar irradiance F0 is defined by equation
(1.3) and we shall again take its value as 240 W m−2. A useful related quantity is the
effective emitting temperature of the Earth, defined by

Te ≡
(

F0

σ

)1/4
≈ 255 K. (3.36)

This is the temperature (assumed uniform) of the planet in the absence of an absorbing
atmosphere, given the observed unreflected solar irradiance F0: see Section 1.3.2.

7 In fact on a global and annual average the stratosphere absorbs about 12 W m−2 of solar radiation and has a
mean infra-red absorptance of about 0.1.
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Fig. 3.20 Two-layer model atmosphere, including an optically thin stratosphere at temperature Tstrat, a
troposphere at temperature Ttrop and the ground at temperature Tg. See text for further details.

The model is illustrated in Figure 3.20; balancing the upward and downward irradiances
above the stratosphere we have

F0 = Fstrat + (1 − ε)
(
Ftrop + TlwFg

)
. (3.37)

Here

Fstrat = σεT4
strat , Ftrop = σ(1 − Tlw)T4

trop , Fg = σT4
g ,

are the upward emission from the stratosphere, the troposphere and the ground, respectively,
and the effects of the non-zero absorptances of each atmospheric layer have been taken into
account.

The balance of irradiances between the stratosphere and the troposphere implies

F0 + Fstrat = Ftrop + TlwFg; (3.38)

eliminating F0 between equations (3.37) and (3.38) therefore gives

2Fstrat = ε
(
Ftrop + TlwFg

)
. (3.39)

This has a simple physical interpretation: the left-hand side represents the net radiative
power leaving the stratosphere in the upward and downward directions; in equilibrium this
must equal the net power absorbed by the stratosphere from the troposphere and the ground,
as represented by the right-hand side. The solar irradiance does not appear in this equation,
since it has been assumed to pass through the stratosphere without absorption.
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Eliminating Ftrop + TlwFg from equations (3.37) and (3.38) we obtain

F0 − Fstrat = (1 − ε) (F0 + Fstrat)

and hence

σεT4
strat = Fstrat = εF0

2 − ε
. (3.40)

But since ε � 1 we obtain to a good approximation

σT4
strat ≈ F0

2
,

independently of ε, and using equation (3.36) this gives the stratospheric temperature

Tstrat ≈ Te

21/4 = 214 K . (3.41)

This value does not depend on the absorptance ε of the stratosphere, provided that it is
small, nor on the power Ftrop + TlwFg coming from below, provided that it is non-zero; it
depends only on the unreflected solar irradiance F0.

From equations (3.39) and (3.40) we obtain

Ftrop = 2F0

2 − ε
− TlwFg . (3.42)

The balance of irradiances between the troposphere and the ground implies

TswF0 + TlwFstrat + Ftrop = Fg ; (3.43)

using equations (3.40), (3.42) and (3.43) we can obtain expressions for Ftrop and Fg in
terms of F0. These are similar to equations (1.6) and (1.5), but include small increases
of order ε, due to the ‘greenhouse effect’ of the optically thin stratosphere. The resulting
tropospheric and surface temperatures are therefore slightly greater than in the absence of
the stratosphere.

3.7.2 Continuously stratified atmosphere in radiative equilibrium

We now consider an atmosphere in radiative equilibrium in which the temperature varies
continuously with height. Our aim is to solve the radiative-transfer equations, subject to
appropriate boundary conditions, to find the vertical temperature profile. In the infra-red
we use the diffuse approximation of Section 3.2.3 and further assume that the atmosphere
is grey: that is, the extinction coefficient k (and hence the scaled optical depth χ∗ defined
by equations (3.29) and (3.16)) is independent of frequency.8 We can therefore integrate
equation (3.15) and the corresponding equation for upward irradiance over frequency to

8 This ‘grey gas’ assumption is convenient for some purposes, but it can be seriously misleading for others: see
e.g. Section 8.5. Note that Figure 3.14 implies that the transmittance – which depends on k – varies strongly
with frequency for the most important infra-red-absorbing gases.
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obtain the following equations for the spectrally integrated long-wave irradiances F↑(χ∗)
and F↓(χ∗):

− dF↑

dχ∗ + F↑ = πB(T), (3.44a)

dF↓

dχ∗ + F↓ = πB(T). (3.44b)

Equations (3.44) represent the two-stream approximation; note that B is the spectrally
integrated Planck function, so that πB(T) = σT4 by equation (3.7), where T is the temper-
ature at the level corresponding to the scaled optical depth χ∗. In each of equations (3.44)
the first term represents the rate of change of the irradiance along the path, the second term
represents extinction and the term πB on the right-hand side represents emission, which
contributes equally in both directions; cf. Section 3.2.2. The minus sign in equation (3.44a)
appears because χ∗ is an optical depth and decreases along the upward path.

We again assume that the atmosphere is transparent to short-wave radiation, so there can
be no short-wave heating (Qsw = 0). Given that the atmosphere is in radiative equilibrium
the long-wave heating Qlw is also zero; see Section 3.6.4. Hence, by equation (3.28), the
net upward long-wave irradiance Fz is independent of height, so

Fz = F↑ − F↓ = constant.

The constant can be found by considering the boundary condition at the top of the atmo-
sphere. Here the scaled optical depth χ∗ = 0 and the downward long-wave irradiance
F↓(0) = 0 also, since the only incoming radiation is short-wave. The net upward long-
wave irradiance here is therefore Fz = F↑(0), which must balance the incoming unreflected
short-wave irradiance, which we again take as F0 ≈ 240 W m−2, as in Section 1.3.2. Hence

Fz = F↑ − F↓ = F0. (3.45)

We now find F↑, F↓ and πB by a series of tricks. We first add equations (3.44a)
and (3.44b) to get

− d
dχ∗

(
F↑ − F↓)

+ F↑ + F↓ = 2πB(T);

the derivative vanishes by equation (3.45), so

πB(T) = 1
2

(
F↑ + F↓)

. (3.46)

We next subtract equation (3.44b) from equation (3.44a) and use equation (3.45) to get
d

dχ∗
(

F↑ + F↓)
= F↑ − F↓ = F0.

Since F0 is constant, we can integrate to get

F↑ + F↓ = F0χ
∗ + constant.

Again using the upper boundary condition, we see that the constant is F0, so that

F↑ + F↓ = F0(1 + χ∗). (3.47)
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From equations (3.45) and (3.47) we can then find the upward and downward irradiances
in terms of F0 and the scaled optical depth,

F↑ = 1
2 F0(2 + χ∗), (3.48)

F↓ = 1
2 F0χ

∗, (3.49)

and hence, using equation (3.46), an expression for the temperature:

πB(T) = σT4 = 1
2 F0(1 + χ∗). (3.50)

Thus F↑, F↓ and B are all linear functions of the scaled optical depth χ∗.
The expressions derived above apply within the atmosphere; we now consider the

radiation balance at the ground, which we take to be a black body at temperature Tg and
at scaled optical depth χ∗

g , say. From equation (3.48) the upward long-wave irradiance in
the atmosphere just above the ground is F0(2 + χ∗

g )/2. If we assume that this equals the
black-body irradiance πB(Tg) = σT4

g from the ground itself, then

σT4
g = F0(1 + 1

2χ∗
g ) = σT4

e (1 + 1
2χ∗

g ) , (3.51)

where Te ≈ 255 K is the effective emitting temperature given by equation (3.36). Note that
this again demonstrates a greenhouse effect, since the atmosphere has a non-zero optical
depth, χ∗

g > 0, and so Tg is larger than the value Te that would occur in the absence of an
absorbing atmosphere.

The scaled optical depth is not a very intuitive vertical coordinate. However, if the
height profiles of the extinction coefficient k and the absorbing gas density ρa are given,
we can express the radiances and temperature in terms of height. As a simple example, we
take k to be independent of height z and ρa(z) = ρa(0) e−z/Ha , as in Section 3.6.2. Then
χ∗(z) = χ∗

g e−z/Ha , and equations (3.48)–(3.50) give

F↑(z) = 1
2 F0

(
2 + χ∗

g e−z/Ha
)

, F↓(z) = 1
2 F0χ

∗
g e−z/Ha ,

and

T(z) =
[

F0

2σ

(
1 + χ∗

g e−z/Ha
)]1/4

. (3.52)

These profiles are plotted as functions of z/Ha in Figure 3.21 for χ∗
g = 2 and F0 =

240 W m−2. The height at which the temperature T equals the effective emitting temperature
Te (see equation (3.36)) is sometimes called the emission height; in the present case,
equation (3.52) shows that this is the height at which the scaled optical depth χ∗ = 1.
Moreover T → (F0/2σ)1/4 as z → ∞: this is sometimes called the skin temperature,
and it equals the stratospheric temperature Tstrat = 2−1/4Te given by equation (3.41) in
the simpler model of Section 3.7.1. The behaviour of the atmospheric temperature as the
ground is approached is given by

T(z) → Tb ≡ Te

(1 + χ∗
g

2

)1/4

as z ↓ 0 ,
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Fig. 3.21 Vertical profiles of the downward and upward irradiances (left) and temperature (right) for the
two-stream model. Here χ∗

g = 2 and F0 = 240 W m−2. In the right-hand panel the vertical dashed
lines indicate the temperatures Tstrat, Tb and Tg (which equal 215 K, 282 K and 303 K, respectively,
for the stated parameters), and the thick horizontal line at z = 0 indicates the temperature
discontinuity between the bottom of the atmosphere and the ground.

whereas the temperature Tg of the ground itself is given by equation (3.51) as

Tg ≡ Te

(2 + χ∗
g

2

)1/4

.

The model therefore predicts a temperature discontinuity between the ground and the
atmosphere just above it: this is of course an unphysical consequence of the radiative-
equilibrium assumption. Moreover the lapse rate −dT/dz associated with the radiative-
equilibrium profile (3.52) may exceed the dry adiabatic lapse rate near the ground, implying
static instability there. Inclusion of convection in the model removes the temperature
discontinuity and forces the lapse rate to become stable.

3.8 A simple model of scattering

We conclude this chapter with a brief discussion of the scattering of solar radiation in the
atmosphere. We consider a plane-parallel atmosphere and make the two-stream approxi-
mation, assuming that a fraction f of the spectral irradiance is scattered forwards (i.e. in the
direction of the beam) and a fraction 1 − f is scattered backwards. These fractions repre-
sent integrals over the forward- and backward-pointing hemispheres of the corresponding
radiances.

We first work in terms of the vertical coordinate z and consider the downward penetration
of the downward spectral irradiance F↓

ν at a short-wave frequency ν. By analogy with the
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radiative-transfer equation (3.10), this satisfies the equation

dF↓
ν

d(−z)
= −aνρaF↓

ν − sνρa(1 − f )F↓
ν + sνρa(1 − f )F↑

ν . (3.53)

This states that the downward irradiance decreases in the downward direction because
of the absorption term aνρaF↓

ν and because of the backscattered component sνρa(1 − f )
F↓

ν , and increases because of the backscattering of upward irradiance sνρa(1 − f )F↑
ν

into the downward direction. Emission is neglected, since the Planck function for short-
wave frequencies at terrestrial atmospheric temperatures is negligible. A rearrangement of
equation (3.53), in terms of the extinction coefficient kν = aν + sν (see equation (3.9))
gives

dF↓
ν

d(−z)
= −kνρaF↓

ν + sνρa f F↓
ν + sνρa(1 − f )F↑

ν .

We now replace −kνρa dz by the optical depth increment dχ∗
ν ; cf. equation (3.29).

Introducing the albedo for single scattering,

ων = sν

aν + sν

= sν

kν

,

and dropping the subscripts ν for simplicity, we obtain

dF↓

dχ∗ + F↓ = ω[ f F↓ + (1 − f )F↑]. (3.54a)

In the same way we obtain the equation for the upward irradiance F↑:

− dF↑

dχ∗ + F↑ = ω[ f F↑ + (1 − f )F↓]. (3.54b)

The simplest case is that of an atmospheric layer in which there is scattering, but no
absorption, i.e. with ω = 1. This layer could for example be a crude representation of a
cloud. Equations (3.54) then give

dF↓

dχ∗ + (1 − f )
(

F↓ − F↑)
= 0, (3.55a)

− dF↑

dχ∗ + (1 − f )
(

F↑ − F↓)
= 0. (3.55b)

Addition of equations (3.55) shows that the net downward spectral irradiance is constant:

− Fz = F↓ − F↑ = constant. (3.56)

Suppose that the downward spectral irradiance at frequency ν at the top of the layer
(χ∗ = 0, say) is Finc and that the upward spectral irradiance at the bottom of the layer
(χ∗ = χ∗

1 , say) is zero. Suppose also that the transmitted spectral irradiance at the bottom
is Ftrans and the reflected spectral irradiance at the top is Frefl; see Figure 3.22. We therefore
have the boundary conditions

F↓(0) = Finc, F↑(0) = Frefl, F↓(χ∗
1 ) = Ftrans, F↑(χ∗

1 ) = 0. (3.57)
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Fig. 3.22 Scattering from a horizontal layer, showing the incoming spectral irradiance Finc, the transmitted
spectral irradiance Ftrans and the reflected spectral irradiance Frefl.

We can define a transmission coefficient T = Ftrans/Finc and a reflection coefficient (or
layer albedo) R = Frefl/Finc. Then −Fz = Finc − Frefl = (1 − R)Finc = Ftrans − 0 = TFinc.
Hence

R + T = 1, (3.58)

implying conservation of irradiance.
Using F↓ − F↑ = −Fz = TFinc and the upper boundary condition F↓(0) = Finc, we can

now solve equation (3.55a) to get

F↓(χ∗) = Finc[1 − (1 − f )Tχ∗] (3.59a)

and, using equation (3.56),

F↑(χ∗) = Finc[R − (1 − f )Tχ∗]. (3.59b)

Then substitution of F↑(χ∗
1 ) = 0 into equation (3.59b) and use of equation (3.58) gives

the transmission and reflection coefficients

T = 1
1 + (1 − f )χ∗

1
, R = (1 − f )χ∗

1
1 + (1 − f )χ∗

1
.

Note that, as χ∗
1 → ∞, the reflection coefficient (layer albedo) tends to 1 and the trans-

mission coefficient tends to 0, i.e. the layer becomes a nearly perfect reflector as its optical
thickness becomes large.

The case of a layer that both absorbs and scatters solar radiation, so that the single-
scattering albedo ω < 1, involves more complicated mathematics, but the physical
conclusions are similar, except that R + T < 1. See Problem 3.11.

Further reading

For general introductions to the subject of atmospheric radiation see, for example, Houghton
(2002), Wallace and Hobbs (2006), Salby (1996) and Goody (1995). A more specialised
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text is that of Petty (2004). The work by Goody and Yung (1989) is the second edition
of the classic text in the field, and goes far beyond the treatment given in this chapter.
The proof that the spectral energy density in an isothermal cavity depends only on the
frequency and temperature is given in books on thermal physics, such as that by Blundell
and Blundell (2009). The Planck function, equation (3.1), and the Boltzmann distribution,
equation (3.4), must be derived using statistical mechanics: see, for example, the books
by Blundell and Blundell (2009) and Glazer and Wark (2001). For the Poynting vector
see standard books on electromagnetism, such as those by Grant and Phillips (1990)
and Lorrain et al. (1988). The integrating factor method is given in standard texts on
mathematical methods, such as Riley et al. (2006), Boas (1983) and Lyons (1995). Banwell
and McCash (1994) and Atkins (2006) provide introductions to molecular spectroscopy,
while an excellent treatment of many aspects of radiative transfer and spectroscopy is
presented by Thorne (1988). Derivations of the Lorentz profile, equation (3.21), are given,
for example, by Thorne (1988) and Goody and Yung (1989); see also Bransden and
Joachain (1989) for the quantum-mechanical details. The quantum harmonic oscillator is
covered, for example, by Rae (2007). The cooling-to-space approximation was introduced
by Rodgers and Walshaw (1966). Basic radiative properties of the stratosphere are given
by Ramanathan and Dickinson (1979).

Problems

Problem 3.1 (i) Given equation (3.1) for Bν , derive equation (3.2) for Bλ.
(ii) Show that the values of ν and λ that maximise Bν(T) and Bλ(T) are given by

νmax

T
= c1, λmaxT = c2,

respectively, where c1 and c2 are constants. Show that, for any given T , νmax and λmax
do not correspond to the same photon energy. Given that c2 = 2.9 × 10−3 m K, find the
temperatures for which Bλ is maximum at 500 nm and at 10 μm.

(iii) Assuming that the Sun behaves as a black body at a temperature of T = 5800 K,
calculate Bν(T) and Bλ(T) at 500 nm and the percentage increase in these spectral radiances
if the temperature increases by 100 K.

Problem 3.2 (i) Elements of surface �S1 and �S2 are a distance r apart, with normals
inclined at angles θ1 and θ2 to the line joining them. Under what conditions is the net
radiative power flow between them in the optical passband �ν given by

�P1→2 = Bν(T1)

r2 �ν �S1 �S2 cos θ1 cos θ2?

(ii) Integrate
∫ ∞

0 Bν dν using the substitution x = hν/(kBT) and hence derive the right-
hand member of equation (3.7). Use the relations∫ ∞

0

x3 dx
ex − 1

= π4

15
, σ = 2π5k4

15h3c2 .
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Hence use the results of (i) to show that the total solar irradiance Fs (i.e. the normal
irradiance just outside the atmosphere) equals σT4

s r2
s /d2, where Ts is the effective black-

body temperature of the Sun, rs is the Sun’s radius and d is the Sun–Earth distance. Evaluate
Fs, given that Ts = 5800 K.

(iii) By carrying out the appropriate integration, find the power absorbed by a horizontal
black disc of radius a from an infinite horizontal black plane at temperature T1 over which
it is suspended at height h.

(iv) Find the answer to (iii) using symmetry and thermodynamic arguments. Find also
the power absorbed from the plane by a black sphere of radius a.

Problem 3.3 Assume that the Earth and Sun radiate as black bodies at 288 and 6000 K,
respectively. Show that the radiative power per unit area, per unit wavelength interval (the
spectral irradiance), falling on a horizontal plane just above the Earth’s surface and with
the Sun overhead, is πBλ(288 K) from the side facing the Earth and

(1 − A)
( rs

d

)2
πBλ(6000 K)

from the side facing the Sun. Here A ≈ 0.3 is the albedo of the Earth–atmosphere system
(see Section 1.3.1), rs is the Sun’s radius and d is the Sun–Earth distance. Use Figure 3.1
to estimate the maximum values of the solar and terrestrial spectral irradiances and hence
sketch the variations of these irradiances with wavelength. Comment on the practical
relevance of your results.

Problem 3.4 A low-altitude Earth satellite in an equatorial orbit carries below it two
isolated spherical radiation sensors of negligible heat capacity. One is painted white and
may be assumed to be perfectly reflecting at all wavelengths at which there is significant
solar energy (λ < 4 μm) and perfectly absorbing at longer wavelengths. The other is painted
black and is perfectly absorbing at all wavelengths. Assume that there is no input of direct
or scattered energy from the spacecraft.

(i) Calculate the temperatures of the two spheres at midnight over a thick cloud sheet at
a temperature of 280 K.

(ii) Find the radiance due to diffusely scattered sunlight just above a cloud of albedo α

when the Sun is overhead.
(iii) Assuming that the spheres are shadowed from overhead direct sunlight by the

spacecraft, calculate their temperatures over a thick cloud of temperature 270 K and albedo
0.8, given that the total solar irradiance Fs = 1370 W m−2.

Problem 3.5 Investigate the equivalent width of a Lorentz line, as follows. Substitute S
times the right-hand side of equation (3.21) into equation (3.25) and use equation (3.26) to
get the following expression for the equivalent width:

W = γL

∫ ∞

−∞

[
1 − exp

(
− q

x2 + 1

)]
dx (3.60)

where x = (ν − ν0)/γL and q = uaS/(γLπ).
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The integral in equation (3.60) can be evaluated in terms of Bessel functions; however,
there are two special cases in which it can be approximated easily. The first is the case
of a strong line, which is valid when the mass of absorber in the path is so large that
uaS/(γLπ) � 1, i.e. q � 1: sketch the integrand in equation (3.60) in this case. Verify that
the exponential in the integrand is then negligible except where x2 � q � 1 and show that
the equivalent width becomes

W ≈ 2γL

∫ ∞

0
[1 − exp(−q/x2)]dx.

Use the substitution y = 1/x and integration by parts to show that

W ≈ 4γLq
∫ ∞

0
exp(−qy2) dy = 2γL(πq)1/2 = 2(SuaγL)1/2.

On the other hand, if the mass of absorber in the path is small, we have the weak-line
limit, with q � 1. Show that, in this case,

W ≈ γL

∫ ∞

−∞
q dx

x2 + 1
= γLqπ = Sua,

in agreement with equation (3.27).

Problem 3.6 Under what conditions on the absorber mixing ratio is the transmittance at
the centre ν0 of a Lorentz line, for a path at pressure p, of length l and absorber density ρa,
independent of the pressure?

Problem 3.7 Investigate the equivalent width of a Doppler line, as follows. Put r =
uaS/γD

√
π and x = (ν − ν0)/γD, to get

W = γD

∫ ∞

−∞

[
1 − exp

(
−re−x2

)]
dx.

The integral cannot be evaluated explicitly in general. However, in the strong-line limit,
r � 1, it can be shown that the absorptance Aν = 1 − Tν (the integrand [. . . ] above) is
nearly zero for |x| > (ln r)1/2 and nearly unity for |x| < (ln r)1/2. Hence show that the
integral can be evaluated approximately as

W = 2γD

∫ ∞

0
(1 − Tν) dx ≈ 2γD(ln r)1/2 = 2γD

[
ln

(
uaS

γD
√

π

)]1/2
.

Show that, in the weak-line limit r � 1,

W ≈ γD

∫ ∞

−∞
r exp(−x2) dx = γDr

√
π = Sua,

in agreement with equation (3.27).

Problem 3.8 Consider a CO2 line at 15 μm (wavenumber ν̃ = 1/λ= 667 cm−1) with
γL = (p/p0)(T0/T)1/2γL0 (cf. equation (3.22)), where p0 = 1000 hPa, T0 = 250 K and
γL0 = 3 × 109 Hz. Find the approximate pressure level in the atmosphere at which the
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transmittance of a horizontal path at the line centre under the assumption of pure Doppler
broadening is the same as that under the assumption of pure Lorentz broadening. (Assume
that the atmosphere is at a typical temperature of 250 K.)

Problem 3.9 The Curtis–Godson approximation is a method of calculating approximate
transmittances for paths of varying pressure and absorber density. For a vertical path, one
defines a mean pressure p and mean temperature T , weighted by the absorber density:

p = 1
ua

∫
pρa dz, T = 1

ua

∫
Tρa dz,

where ua = ∫
ρa dz is the total mass per unit transverse cross-sectional area of the path.

Show that the spectral means of atmospheric transmittances calculated using the Curtis–
Godson approximation are accurate when (i) strong pressure-broadening conditions exist
or (ii) the absorption is weak, irrespective of the line shape.

Derive p for an atmospheric absorber with a constant mass mixing ratio μ for a vertical
path from height z to ∞.

Problem 3.10 (i) Write down an expression for the heating rate h (= Q/cp in units of
K s−1) at height z in the atmosphere due to an absorber of density ρa(z) and constant
extinction coefficient k when the Sun is overhead. (Denote the normal solar spectral
irradiance integrated over the absorption band by Fνs �ν; neglect scattering.)

(ii) A simple model of radiative heating by solar radiation in the upper stratosphere and
lower mesosphere assumes that ozone has a mass mixing ratio

μ(p) = ap1/2,

where a is a constant and p is pressure. Show that the heating rate h due to ozone is
proportional to

p1/2 exp
(

−2ak
3g

p3/2
)

,

where k is the extinction coefficient of ozone for solar radiation. Show that the pressure pm
at which h is a maximum is close to that of the stratopause and evaluate h(pm) in K day−1.

(Take k = 1.5 × 104 m2 kg−1 in a spectral region where the solar irradiance is 7 W m−2

and take a = 3 × 10−7 Pa−1/2.)
(iii) In a simple model of radiative cooling due to thermal emission by CO2 (‘cooling to

space’; see Section 3.6.3), the cooling rate C is given (in units of K s−1) by

C = − g
cp

(
dT ∗

dp

)
πB(T)�ν,

where T ∗(p) is the transmittance from pressure level p to space (cf. equation (3.34)). The
spectrally integrated Planck function B(T)�ν for the CO2 band can be approximated by

B(T)�ν = 15(T/300)3.8 W m−2 steradian−1
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and T ∗ can be taken to have the form

T ∗ = exp(−βp)

where β = 3.6 × 10−4 Pa−1. Diurnal variations can be crudely accounted for by dividing
h(pm) by 2 (why?). Estimate the radiative equilibrium temperature at pm.

Problem 3.11 Consider a layer of cloud that both absorbs and scatters solar radiation, so
that the single-scattering albedo ω < 1. Put 1 − ωf = a and ω(1 − f ) = b and rewrite
equations (3.54) as(

d
dχ∗ + a

)
F↓ = bF↑,

(
d

dχ∗ − a
)

F↑ = −bF↓.

Hence show that (
d2

dχ∗2 − α2

)
F↑ = 0, where α2 = a2 − b2.

Verify that α2 > 0, so the solution for F↑ is a combination of exponentials or, equiva-
lently, of hyperbolic functions. Using one of the boundary conditions (3.57), show that F↑
must take the form

F↑(χ∗) ∝ sinh α (χ∗
1 − χ∗).

Show that F↓ involves both sinh and cosh functions and, by applying the remaining
boundary conditions, derive the reflection coefficient R and the transmission coefficient T
for the cloud:

R = b sinh θ

α cosh θ + a sinh θ
, T = α

α cosh θ + a sinh θ
,

where θ = αχ∗
1 .

Show that, as the optical depth χ∗
1 of the layer becomes large,

R → R∞ = b
α + a

= b
(a2 − b2)1/2 + a

, T → 0.

Evaluate the reflection and transmission coefficients for ω = 0.9997, f = 0.9 and χ∗
1 =

10, 20 and 30. Note that R + T < 1: what is the physical reason for this? Find also the
reflection coefficient for an infinitely deep cloud with these values of ω and f .
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A wide variety of fluid flows occurs in the atmosphere. This chapter introduces the basic
fluid-dynamical laws that govern these atmospheric flows. The length scales of interest
range from metres to thousands of kilometres; these are many orders of magnitude greater
than molecular scales such as the mean free path, at least in the lower and middle atmosphere.
We may therefore average over many molecules, ignoring individual molecular motions and
regarding the fluid as continuous. ‘Local’ values of quantities such as density, temperature
and velocity may be defined at length scales that are much greater than the mean free path
but much less than the scales on which the meteorological motion varies.

In Section 4.1 we derive the mass conservation law (often called the continuity equation)
for a fluid. In Section 4.2 we introduce the concept of the material derivative and the Eulerian
and Lagrangian views of fluid motion. An alternative form of the mass conservation law is
given in Section 4.3 and the equation of state for the atmosphere (an ideal gas) is recalled
in Section 4.4. Then in Section 4.5 Newton’s Second Law is applied to a continuous
fluid, giving the Navier–Stokes equation. The Earth’s rotation cannot be ignored for
large-scale atmospheric flows, so its incorporation into the Navier–Stokes equation is
discussed in Section 4.6. The full equations of motion for a spherical Earth and for Cartesian
tangent-plane geometry are given in Section 4.7. Simplifications of these equations for large-
scale flows are introduced in Section 4.8. A useful alternative formulation with pressure,
rather than height, as a vertical coordinate is briefly mentioned in Section 4.9. Finally, in
Section 4.10, we introduce the First Law of Thermodynamics, as applied to the atmosphere.
Some applications of these results to atmospheric phenomena are discussed in the problems
at the end of the chapter, and further applications are provided in Chapter 5.

4.1 Mass conservation

Consider a small ‘box’, or volume element, of sides �x, �y and �z, fixed in space, with
fluid passing through it (Figure 4.1). Let the fluid velocity be u = (u, v, w) and the fluid
density be ρ; these generally vary with position r and time t.

The net mass inflow in the x-direction per unit time is the difference between that coming
in on the left and that going out on the right (see Figure 4.2); i.e.[

ρ(x)u(x) − ρ(x + �x)u(x + �x)
]
�y �z

≈ − ∂

∂x
(ρu)�x · �y �z = − ∂

∂x
(ρu)�V ,
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Fig. 4.1 A volume element, fixed in space, with fluid passing into and out of it.

Fig. 4.2 A side view of the box in Figure 4.1.

where �V = �x �y �z, the volume of the box. Including the inflow and outflow in the y-
and z-directions, the net inflow is therefore

− ∇ · (ρu)�V . (4.1)

This must equal the rate of increase of mass (density times volume) in the box, namely

∂

∂t
(ρ �V). (4.2)

However, the box is fixed, so its volume �V is constant. Hence, on cancelling �V from
equations (4.1) and (4.2), we obtain the continuity equation, or mass conservation law

∂ρ

∂t
+ ∇ · (ρu) = 0. (4.3)

By expansion of the ∇ · (ρu) term using a standard vector-calculus identity, this can also
be written as

∂ρ

∂t
+ u · ∇ρ + ρ∇ · u = 0. (4.4)

4.2 The material derivative

We can measure flow with respect to fixed points r in space. For example, an anemometer
measures wind speed and a wind-vane measures wind direction; together these give us the
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Fig. 4.3 A schematic diagram of fluid flow vectors at each point on a grid.

Fig. 4.4 A schematic illustration of the possible distortion with time of a moving blob of fluid, initially
rectangular in shape.

vector wind u. Suppose that such measurements are made for a fixed grid of points, as
shown schematically in Figure 4.3; this is the Eulerian picture of the flow.

An alternative is to imagine following the motion of tiny ‘blobs’ of fluid (e.g. marked by
a dye). Each blob is supposed to contain many molecules, but moves as a coherent entity,
at least for short times; however, in general a blob will be distorted by the flow, as shown
in Figure 4.4.

Let the position of a given blob (or rather, of its centre of mass) at time t be r(t). The
trajectory of its motion between times 0 and t might be as in Figure 4.5. Now consider the
kinematics of the blob, ignoring any distortion. Its velocity at time t is the Eulerian velocity
u evaluated at the current position r(t) of the blob; this is also equal to the current time
rate-of-change of the blob’s position. Hence

u
(
r(t), t

) = dr
dt

. (4.5)
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( )

r (0)

r

Fig. 4.5 A schematic picture of the trajectory of a moving blob of fluid. On this scale, the blob is too small
for its distortion in shape to be shown.

In a similar fashion the acceleration of the blob at time t, say a
(
r(t), t

)
, equals the second

derivative of the position vector:

a
(
r(t), t

) = d2r
dt2

.

This picture of fluid motion in terms of moving blobs is called the Lagrangian picture. In
practice we may not be able to follow blobs for long; nevertheless, the Lagrangian picture
is important conceptually.

The connection between the Lagrangian and Eulerian pictures is made as follows. Let
r = (x, y, z) and u = (u, v, w). The x-component of equation (4.5) states that

dx
dt

= u
(
x(t), y(t), z(t), t

)
,

so, differentiating with respect to t once again and using the chain rule on the right,

d2x
dt2

= ∂u
∂x

dx
dt

+ ∂u
∂y

dy
dt

+ ∂u
∂z

dz
dt

+ ∂u
∂t

= ∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

+ w
∂u
∂z

= ∂u
∂t

+ u · ∇u ≡ Du
Dt

,

(where the three components of equation (4.5) have been used) or in vector form

a = d2r
dt2

= ∂u
∂t

+ (u · ∇)u = Du
Dt

. (4.6)

We have introduced here the important operator

D
Dt

≡ ∂

∂t
+ u · ∇, (4.7)

known as the material derivative or advective derivative. This represents the rate of
change with respect to time following the motion (or following a blob) and should be
contrasted to ∂/∂t, the rate of change with respect to time at a fixed point. (The notation
d/dt is also sometimes used for the material derivative in meteorological books.)
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Note that the contribution (u · ∇)u to the material derivative is non-linear in u. This
makes the behaviour of the atmosphere difficult to forecast (for example, non-linear systems
are well known to display chaotic behaviour), but also leads to many interesting features.

4.3 An alternative form of the continuity equation

Using the definition (4.7), the continuity equation (4.4) can be rewritten as

Dρ

Dt
+ ρ∇ · u = 0. (4.8)

This form of the continuity equation has a useful interpretation in Lagrangian terms, as
follows.

Rather than considering a fixed ‘box’ in space, as above, we focus on a small, moving,
initially rectangular ‘blob’.1 The blob is of fixed mass δm and time-varying volume δV =
δx δy δz and travels in a unidirectional flow (u(x), 0, 0) in the x-direction; see Figure 4.6.
This flow is assumed to vary in the x-direction; hence, within a small time interval δt
the left-hand end of the blob moves from x to x1 = x + u(x) δt while the right-hand end
moves from x + δx to x2 = x + δx + u(x + δx) δt. The blob’s x-length therefore increases
by an amount [u(x + δx) − u(x)] δt. Since the velocity vector has no y- or z-component,
the dimensions δy and δz remain unchanged. The new volume of the blob is therefore

Fig. 4.6 A rectangular blob, at times t and t + δt, in a flow that is moving in the x-direction and also varies
in the x-direction.

1 In this chapter we use δ to represent small Lagrangian quantities and � to represent small Eulerian quantities.
We also use the word ‘box’ to indicate an infinitesimal volume element fixed in space and ‘blob’ to indicate a
moving infinitesimal mass element. The latter is similar to the ‘parcel’ concept introduced in Section 2.5.
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δV ′ = {δx + [u(x + δx) − u(x)]δt} δy δz and this may be approximated, using a Taylor
expansion, by

δV ′ ≈
(

δx + ∂u
∂x

δx δt
)

δy δz = δV
(

1 + ∂u
∂x

δt
)

.

So
D(δV )

Dt
= lim

δt→0

(
δV ′ − δV

δt

)
= (δV )

∂u
∂x

.

More generally, allowing for the flow to be three-dimensional and varying in all directions,
so that u = u(r, t), we find that

D(δV )

Dt
= (δV )∇ · u

However, δV = δm/ρ and the constant mass δm can be cancelled, giving
Dρ

Dt
= −ρ∇ · u,

which is equivalent to equation (4.8). If ∇ · u = 0 everywhere, the fluid is said to be
incompressible: see Section 5.2.

4.4 The equation of state for the atmosphere

As in Chapter 2, we assume that the atmosphere is an ideal gas, so that the equation of
state is

p = RaTρ, (4.9)
where p is the pressure, T is the temperature, ρ is the density and Ra is the gas constant per
unit mass of air; cf. equation (2.2).

4.5 The Navier–Stokes equation

In this section we derive the Navier–Stokes equation for a fluid, by applying Newton’s
Second Law to a small moving blob of fluid. Since the blob is moving, this means that we
are using the Lagrangian perspective.

Assume that the blob is instantaneously of cuboidal shape, with sides δx, δy and δz, as
in Figure 4.7. The volume of the blob is δV = δx δy δz and its mass is ρ δV , where the
density is ρ, as above. Newton’s Second Law states that

(ρ δV )a = δF, (4.10)

where a is the acceleration of the blob and δF is the vector sum of the forces (including
pressure forces, gravity and friction) acting on the blob. We must consider each of these
forces in turn.
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Fig. 4.7 An instantaneous view of a small blob of fluid.

Fig. 4.8 Illustrating the various pressure forces acting on the blob in the x-direction.

First, consider the pressure forces acting on the blob and single out the x-direction (see
Figure 4.8). At position x the pressure force is p(x) δA in the positive x-direction, where
δA = δy δz is the area of the relevant wall of the blob; at position x + δx the pressure
force is

p(x + δx) δA ≈
(

p(x) + ∂p
∂x

δx + . . .

)
δA,

in the negative x-direction, using a Taylor expansion again. The net pressure force in the
positive x-direction is therefore

−δx
∂p
∂x

δA = −δV
∂p
∂x

,

so in three dimensions the vector pressure force is

δFpress = −(δV )(∇p). (4.11)

Next consider the gravity force acting on the blob: this is just the mass ρ δV of the blob
times g, acting downwards:

δFgrav = −(ρ δV )gk, (4.12)

where k is the unit vertical vector, (0, 0, 1).
Finally, consider the viscous forces acting on the blob. These require quite a complicated

treatment in general, so we shall consider a special case by way of illustration. Suppose
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Fig. 4.9 Illustrating the horizontal stresses acting on the top and bottom of the blob.

first that the bulk flow (averaged over many molecules) is in the x-direction only, and varies
only in the z-direction, i.e. u = (u(z), 0, 0). Recall, from the kinetic theory of gases, that the
x-component of the viscous stress (or tangential force per unit area) acting on a horizontal
surface from above is given by

τ = η
du
dz

, (4.13)

where η is the dynamic viscosity. (It is usually called μ in fluid dynamics texts.) An equal
and opposite stress acts on the surface from below. Figure 4.9 illustrates how stresses in
opposite directions and of slightly different magnitude act on the top and bottom surfaces
of our blob. The net contribution to the viscous force on the blob is the difference between
the stresses on the top and bottom, namely

[
τ(z + δz) − τ(z)

]
δx δy ≈ ∂τ

∂z
δx δy δz = ∂τ

∂z
δV ; (4.14)

using equation (4.13) and assuming that η is constant, this becomes

η
d2u
dz2 δV . (4.15)

The situation is more complicated if there are y- and z-variations as well, but it turns out
that the viscous vector force is

δFvisc = δV η

(
∇2u + 1

3
∇ (∇ · u)

)
. (4.16)

This is clearly a generalisation of equation (4.15); note that it simplifies for an
incompressible fluid, for which ∇ · u = 0.

Assuming that these are the only relevant forces acting on the blob, putting expres-
sions (4.11), (4.12) and (4.16) into Newton’s Second Law (4.10) and using equation (4.6)
for the acceleration a, we get

Du
Dt

= − 1
ρ

∇p − gk + Fvisc , (4.17)

where Fvisc = δFvisc/δV . This is the Navier–Stokes equation (or momentum equation)
for compressible fluid flow in an inertial frame.
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4.6 Rotating frames of reference

The rotation of the Earth is significant for the large-scale dynamics of the atmosphere.
It is usually most convenient to work with a coordinate system fixed with respect to the
Earth; since this system is rotating with respect to inertial space, modifications to the
Navier–Stokes equation (4.17) must be made.

These modifications involve changes to the time derivatives of vectors. Suppose that the
frame R rotates at a constant angular velocity � with respect to an inertial frame I and
define the z-axes of both frames to be in the direction of �. Now consider a time-varying
vector A(t) and suppose, for simplicity, that it lies in the common x, y plane of R and I. As
viewed in the rotating frame R, A changes from A(t) to A(t + δt) ≈ A(t) + δAR, in the
time interval between t and t + δt, where

δAR ≡
(

dA
dt

)
R

δt,

as illustrated in Figure 4.10. However, if the same vector A is viewed in the inertial frame
I, we must allow for the rotation of the frame R with respect to the frame I in the time δt;
this gives an extra contribution to the change in A when it is viewed in the inertial frame, as
shown in Figure 4.11. With a little consideration of vector geometry, the extra contribution
to the change in A is found to be � × A δt, for small δt. (The same can be shown to hold
if A is not in the x, y plane.) So, as δt → 0, we obtain the following relationship between
time derivatives in the inertial frame I and the rotating frame R:(

dA
dt

)
I
=

(
dA
dt

)
R

+ � × A. (4.18)

A double application of equation (4.18) gives(
d2A
dt2

)
I

=
(

d2A
dt2

)
R

+ 2� ×
(

dA
dt

)
R

+ � × (� × A).

Fig. 4.10 The change of the vector A viewed in the rotating frame R.
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A(
t)

d

Fig. 4.11 The change of the vector A viewed in the inertial frame I. In time δt the axes fixed in R, as
observed in I, rotate through an angle � δt, from xRyR to x′

Ry′
R.

r

r

Fig. 4.12 Illustrating the centripetal acceleration.

In particular, if A = r, the position vector, we obtain the following relationship between
the acceleration in the inertial frame and the acceleration, velocity and position vector in
the rotating frame:

aI = aR + 2� × uR + � × (� × r). (4.19)

Let us examine the terms involving � on the right-hand side of equation (4.19). The term
2�× uR represents the Coriolis acceleration: it is perpendicular both to the velocity uR in
the rotating frame and to �. The term �× (�× r) represents the centripetal acceleration:
it has magnitude �2R, where R is the perpendicular distance from the point r to the rotation
axis, and is directed perpendicularly towards the rotation axis, as shown in Figure 4.12.
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Fig. 4.13 Local Cartesian coordinate axes on a spherical Earth.

To rewrite the Navier–Stokes equation in the rotating frame, we need to replace the
acceleration a = Du/Dt by aI in equation (4.17), to get the corresponding equation with
respect to the rotating frame:

Du
Dt

= − 1
ρ

∇p − 2� × u − � × (� × r) − gk + Fvisc , (4.20)

where the subscript R has been dropped and u now represents the velocity measured in
the rotating frame R. Here the acceleration terms 2� × u and � × (� × r) are written
with minus signs on the right-hand side of equation (4.20) and can be regarded as fic-
titious forces (per unit mass) in Newton’s Second Law in the rotating frame. The term
−2� × u is known as the Coriolis force and the term −� × (� × r) as the centrifugal
force.2 The gravity and centrifugal forces can be combined to give the effective gravity
g′ = −gk−�×(�×r), although the difference between g′ and −gk is small at the Earth’s
surface (see Problem 4.5).

4.7 Equations of motion in coordinate form

4.7.1 Spherical coordinates

The natural coordinates in which to express our equations, when they are applied to the
Earth, are spherical coordinates (r, φ, λ),3 where r is the distance from the centre of the
Earth, φ is latitude and λ is longitude. At a point on the Earth’s surface we draw unit
vectors i pointing eastwards, j pointing northwards and k pointing upwards, as shown in
Figure 4.13.

2 Note that the acceleration is centripetal (‘centre-seeking’) whereas the fictitious force, being of opposite sign,
is centrifugal (‘centre-fleeing’).

3 Strictly speaking, oblate spheroidal coordinates should be used; see Gill (1982). We shall ignore this
complication here.
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It is convenient to introduce small incremental distances dx = r cos φ dλ in the eastward
(or zonal) direction and dy = r dφ in the northward (or meridional) direction. We also
introduce the vertical distance z from the Earth’s surface, so that r = a + z, where a is the
Earth’s radius and dz = dr.

It is shown in Appendix B that, neglecting the centripetal acceleration, equation (4.20)
can be written in component form as follows:

Du
Dt

−
(

2� + u
r cos φ

)
(v sin φ − w cos φ) + 1

ρ

∂p
∂x

= F(x), (4.21a)

Dv

Dt
+ wv

r
+

(
2� + u

r cos φ

)
u sin φ + 1

ρ

∂p
∂y

= F(y), (4.21b)

Dw

Dt
− u2 + v2

r
− 2�u cos φ + 1

ρ

∂p
∂z

+ g = F(z), (4.21c)

where F(x), F(y) and F(z) are components of the frictional force in the eastward, northward
and upward directions, respectively, and

D
Dt

= ∂

∂t
+ u

∂

∂x
+ v

∂

∂y
+ w

∂

∂z
. (4.22)

4.7.2 Approximations to the spherical equations

Equations (4.21) are complicated, but approximate versions are sufficient for modelling
many atmospheric dynamical phenomena. In the first place, we can replace the distance r
by the Earth’s radius a with negligible error, since the part of the atmosphere in which we
are interested has a depth of 100 km or so, which is much less than a ≈ 6400 km.

Having done this, consider equation (4.21a). Two useful simplifications can be
made here.

• The zonal wind will generally be less than 100 m s−1 in magnitude. It can then be
verified that

|u|
a cos φ

� 2�,

except perhaps near the poles, where cos φ → 0. (In this calculation we can use the
fact that �a, the tangential speed of the Earth’s surface at the equator, is approximately
465 m s−1.)

• Vertical velocities are usually much less than horizontal velocities, so

|w cos φ| � |v sin φ|,
except perhaps near the equator, where sin φ → 0.

Given these two results, and introducing the Coriolis parameter,

f = 2� sin φ,
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equation (4.21a) reduces to

Du
Dt

− f v + 1
ρ

∂p
∂x

= F(x). (4.23a)

Equation (4.21b) can be simplified in a similar way (but using also the result that |wv|/r �
2�|u sin φ|, except possibly near the equator), to give

Dv

Dt
+ f u + 1

ρ

∂p
∂y

= F(y). (4.23b)

In equation (4.21c) it is easy to show that the terms (u2 + v2)/a and 2�u cos φ are
very much smaller than g = 9.8 m s−2 for any reasonable values of the horizontal velocity
components u and v. Omitting also the vertical friction term F(z), which is usually regarded
as negligible, we obtain

Dw

Dt
+ 1

ρ

∂p
∂z

+ g = 0. (4.23c)

4.7.3 Tangent-plane geometry

Equations (4.23a)–(4.23c) are expressed in spherical coordinates. However, the use of dx
and dy as small eastward and northward distances suggests a further useful simplification,
which is valid when we are considering a comparatively small region near a point P at
latitude φ0 and longitude λ0. In this case we can introduce Cartesian coordinates (x, y, z) on
the tangent plane at the point P, as shown in Figure 4.14: clearly there is little difference
between distances (x′, y′, say) on the surface of the Earth and distances (x, y) on the tangent
plane in the neighbourhood of P. We can therefore re-interpret equations (4.23a)–(4.23c)
as applying to the Cartesian coordinates on the tangent plane and avoid complications due
to spherical geometry. We must, however, replace f (which varies with latitude) by the

Fig. 4.14 Illustrating the use of tangent-plane geometry. The figure shows a section through the centre of
the Earth, O, the North Pole, N, and the point P (at latitude φ0); E denotes a point on the equator.
The plane AP is tangential to the Earth at point P. Northward distances y are measured in this
plane, whereas northward distances y′ are measured on the surface of the Earth. These distances
are almost equal if the latitude φ of point A′ on the surface of the Earth is close to φ0.



107 Geostrophic and hydrostatic approximations

constant value

f0 = 2� sin φ0.

Note that equations (4.23a) and (4.23b) then become identical to those for a system that
is rotating about the z-axis with angular velocity 1

2 f0, except that centripetal accelerations
are again neglected. This approximation is called the f -plane approximation and the
analogous system is the f -plane.

If we wish to consider a larger region we may retain the tangent-plane approximation
but allow for some variation of f with latitude. A Taylor expansion of f (φ) about φ = φ0
gives

f (φ) = 2� sin φ = 2�[sin φ0 + (φ − φ0) cos φ0 + · · · ]
so that on the tangent plane, where φ − φ0 ≈ y/a,

f (y) ≈ f0 + βy, where β = 2� cos φ0

a
=

(
df
dy

)
y=0

. (4.24)

Equation (4.24) is called the β-plane approximation: instead of taking f to be constant,
as in the f -plane approximation, we allow it to vary linearly with the northward distance y.

4.8 Geostrophic and hydrostatic approximations

Under appropriate dynamical conditions we can simplify equations (4.23a)–(4.23c) still
further, using the method of scale analysis. (A simple form of scale analysis was used
in Section 4.7.2 to simplify equations (4.21a)–(4.21c).) For example, consider motions
associated with synoptic-scale systems – that is, large-scale weather systems – at midlati-
tudes, with the time and space scales given in Table 4.1. First consider typical sizes of the
terms in equation (4.23c), the vertical momentum equation. The material derivative can be

Table 4.1 Some scales for large-scale motion in the
atmosphere.

Scale Symbol Typical magnitude

Horizontal scale L 1000 km = 106 m
Vertical scale H 10 km = 104 m
Horizontal velocity U 10 m s−1

Vertical velocity W 10−2 m s−1

Timescale T 1 day ∼ 105 s
Surface density ρ 1 kg m−3

Earth’s radius a 6.4 × 106 m
2 × rotation rate 2� 10−4 s−1

Acceleration of gravity g 10 m s−2
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expanded as

Dw

Dt
= ∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z
.

Very roughly, we can estimate the individual terms here as

∂w

∂t
∼ W

T
∼ 10−2

105 ∼ 10−7 m s−2,

u
∂w

∂x
+ v

∂w

∂y
∼ UW

L
∼ 10−1

106 ∼ 10−7 m s−2,

w
∂w

∂z
∼ W 2

H
∼ 10−4

104 ∼ 10−8 m s−2;

hence in total we estimate
Dw

Dt
∼ 10−7 m s−2.

This is very much smaller than the g term in equation (4.23c):

g ∼ 101 m s−2.

The remaining term is (1/ρ) ∂p/∂z; this is the only term that can possibly balance the large
g term, so equation (4.21c) must become, to a good approximation,

∂p
∂z

= −gρ. (4.25)

This shows that, under our assumed scaling, the vertical momentum equation reduces to
hydrostatic balance (cf. Chapter 2, equation (2.12)).

Now let us perform a similar scale analysis on the horizontal momentum equation (4.23a):

∂u
∂t

∼ 10−4, u
∂u
∂x

∼ 10−4, w
∂u
∂z

∼ 10−5,

f v = 2�v sin φ ∼ 10−3

(all in units of m s−2), where a midlatitude value of φ is used and F(x) is assumed negligible.
Here f v is the biggest term (just), so it must be balanced by the remaining term

(1/ρ) ∂p/∂x, giving the geostrophic approximation:

f v = 1
ρ

∂p
∂x

; (4.26a)

a similar scale analysis applied to equation (4.23b) yields

− f u = 1
ρ

∂p
∂y

. (4.26b)

Thus, for synoptic-scale systems, the horizontal momentum equations (4.23a) and (4.23b)
reduce to geostrophic balance, in which the horizontal pressure gradients are balanced by
Coriolis forces associated with the horizontal winds. The following points should be noted.
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• At each height the horizontal wind blows along the isobars (the lines of constant
pressure), since (u, v, 0) · ∇p = 0 under the geostrophic approximation.

• It is twice the vertical component of the rotation vector, 2� sin φ, that enters.
• The ratio of the ‘horizontal advection’ term to the ‘Coriolis term’ in equation (4.23a) is

approximately

u ∂u/∂x
f v

∼ U2/L
f U

= U
f L

≡ Ro; (4.27)

Ro is a dimensionless number, called the Rossby number. If Ro � 1, the Coriolis term
is comparatively small, whereas if Ro � 1, the Coriolis term is comparatively large and
the geostrophic approximation is usually valid.

4.8.1 The thermal windshear equations

From the geostrophic approximation (4.26a) and the ideal gas law (4.9) we have

f v = RaT
p

∂p
∂x

= RaT
∂ ln p
∂x

,

while from equations (4.25) and (4.9) we have

− g
RaT

= ∂ ln p
∂z

.

Neglecting vertical (but not horizontal) variations in T ,4 cross-differentiation of these gives

f
∂v

∂z
≈ g

T
∂T
∂x

(4.28a)

and similarly, from equations (4.26b), (4.25) and (4.9), we obtain

f
∂u
∂z

≈ − g
T

∂T
∂y

. (4.28b)

These are called the thermal wind equations or, more correctly, the thermal windshear
equations; they give a very useful relation between horizontal temperature gradients and
vertical gradients of the horizontal wind, when both geostrophic balance and hydrostatic
balance apply.

As an example of the use of the thermal windshear equations, consider a case in which
the temperature varies only with the northward distance y, so T = T(y), and decreases with
y, so dT/dy < 0. Suppose that the horizontal wind direction varies between u1 = (u1, v1)

at a lower level z = z1 and u2 = (u2, v2) at a higher level z = z2, as shown in Figure 4.15.
Since T is independent of x, the isotherms T = constant are parallel to the x-axis; moreover,
equation (4.28a) then implies that ∂v/∂z = 0, so v2 = v1. Therefore the difference between
the wind vectors at z1 and z2 is parallel to the x-axis and hence to the isotherms T =
constant. Given that dT/dy < 0, equation (4.28b) implies that ∂u/∂z > 0, so u2 > u1.

4 Vertical variations of T need not be neglected if we use pressure p, rather than height z, as a vertical coordinate;
see Section 4.9.
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Fig. 4.15 Illustrating thermal windshear balance.

Consider the Northern Hemisphere, where f > 0: it can then be seen that if the wind
turns anticlockwise with height (known as backing), the wind on average blows across
the isotherms from the cold to the warm side: this is called cold advection. Conversely,
if the wind turns clockwise with height (veering), the wind on average blows across the
isotherms from warm to cold (warm advection).

Another example is the zonally averaged (i.e. longitudinally averaged) zonal (i.e. east–
west) winds in the lower and middle atmosphere, shown in Figure 1.6, which tend to
be nearly in thermal-windshear balance with the zonally averaged temperature, shown in
Figure 1.5. It can readily be checked that the signs, at least, of ∂u/∂z and ∂T/∂y in these
figures are consistent with equation (4.28b).

There are many other applications of geostrophic and hydrostatic balance in the inter-
pretation of atmospheric processes. An important case is the structure of fronts; see
Problem 4.8.

4.8.2 A circular vortex: gradient–wind balance

We now consider another important type of approximation to the horizontal momentum
equations, which is more accurate than geostrophic balance. In fact it is exact for purely
horizontal flow in the form of a steady vortex with circular streamlines. We consider such
a vortex, centred at a point P, near latitude φ, and use polar coordinates r and ϕ, in the
horizontal plane, also centred at P, as shown in Figure 4.16. For this circular vortex the
velocity vector is u = V (r) iϕ , where iϕ is the unit vector in the azimuthal direction, and the
pressure p is a function of r only. The corresponding Coriolis force is −ρf k × u = ρf V ir,
where ir is the unit vector in the radial direction. We also include the centrifugal force
(ρV 2/r)ir. The sum of these two forces has to be balanced by a radial pressure gradient, so

V 2

r
+ f V = 1

ρ

dp
dr

≡ G,
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Fig. 4.16 Illustrating the circular vortex.

say. This equation expresses gradient–wind balance and should be contrasted with
geostrophic balance, in which the V 2/r term is neglected. It is a quadratic equation for V ,
if G is given, with solutions

V (r) = − rf
2

±
(

r2f 2

4
+ Gr

)1/2

.

Note that physically sensible solutions are possible only if V is real, i.e. if

G = 1
ρ

dp
dr

≥ −rf 2/4,

so the pressure cannot drop too rapidly with radius if gradient–wind balance is to occur.

4.9 Pressure coordinates and geopotential

Meteorologists often use pressure p, rather than height z, as a vertical coordinate. This has
two, quite separate, advantages: first, atmospheric measurements are usually referenced
with respect to pressure rather than height; and second, as we shall see, the equations
of motion take a simpler form in these ‘pressure coordinates’ than they do in height
coordinates. However, care needs to be exercised when taking partial derivatives: we need
to be clear about which variables are held constant in the partial differentiation!

For a small column of air, dp = −gρ dz from hydrostatic balance (equation (4.25)), so
the pressure decreases monotonically with height. There is thus a one-to-one relationship
between pressure and height, which means that no ambiguity will arise in using p as a
vertical coordinate.

We can turn equation (4.25) upside down and use the ideal gas law, equation (4.9), to get

g
(

∂z
∂p

)
x, y, t

= −
(

1
ρ

)
= −RaT

p
,
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so, if the geopotential Φ = gz is introduced, the hydrostatic equation becomes
∂Φ

∂p
= −RaT

p
(4.29)

in pressure coordinates. In equation (4.29) the subscripts x, y and t (indicating which
variables are held constant when the partial p-derivative of Φ is taken) are omitted, since
there should be no danger of confusion.

We can derive the pressure-coordinate versions of geostrophic balance as follows. We
first eliminate the density ρ from equations (4.25) and (4.26a):

f v = −g
(

∂p
∂x

)/(
∂p
∂z

)
= −g

(
∂p
∂x

)(
∂z
∂p

)
,

where we have again turned (∂p/∂z)x, y, t upside down. We next use the well-known
‘reciprocity’ theorem of partial differentiation (used, for example, in thermodynamics):(

∂α

∂β

)
γ

(
∂β

∂γ

)
α

(
∂γ

∂α

)
β

= −1. (4.30)

This gives

f v = g
(

∂z
∂x

)
y, p, t

=
(

∂Φ

∂x

)
y, p, t

(4.31)

and similarly

f u = −
(

∂Φ

∂y

)
x, p, t

. (4.32)

Equations (4.31) and (4.32) are the equations for geostrophic balance in pressure coordi-
nates. A p-coordinate version of the thermal windshear equations can be derived, without
assuming that T is independent of z; see Problem 4.9.

The full equations of motion (4.21a)–(4.21c) can be derived in pressure coordinates, but
these will not be needed here. Note, however, that instead of the geometric vertical velocity
w we must introduce a vertical ‘pressure velocity’

ω ≡ Dp
Dt

,

which can be shown to be approximately equal to −ρgw.
In pressure coordinates the equation of continuity of mass, equation (4.4) or (4.8), is

replaced by the simpler form(
∂u
∂x

)
y, p, t

+
(

∂v

∂y

)
x, p, t

+
(

∂ω

∂p

)
x, y, t

= 0, (4.33)

with no time derivative or density ρ appearing. This can be obtained by considering
a small moving blob of fluid, as in Figure 4.7, with volume δV = δx δy δz and mass
δm = ρ δV = −δx δy δp/g (using the hydrostatic equation in the form δp = −gρ δz). This
mass is constant, following the motion of the blob, so D(δm)/Dt = 0 and hence

0 = 1
δm

D
Dt

(δm) = g
δx δy δp

D
Dt

(
δx δy δp

g

)
.
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Using the chain rule and the fact that D(δx)/Dt = D(x2 − x1)/Dt = u2 − u1 = δu,
D(δp)/Dt = D(p2 − p1)/Dt = ω2 − ω1 = δω, etc., we get

δu
δx

+ δv

δy
+ δω

δp
= 0,

which gives equation (4.33) as δx, δy and δp tend to zero.

4.10 The thermodynamic energy equation

The First Law of Thermodynamics for a moving blob of fluid of unit mass, undergoing
small changes δS of entropy, δU of internal energy and δV of volume in time δt, can be
written:

T δS = δU + p δV ;

cf. Chapter 2, equation (2.17). As shown in equation (2.22), this can be written, for an ideal
gas, as

T δS = cp δT − 1
ρ

δp, (4.34)

where cp is the specific heat capacity at constant pressure.
Dividing equation (4.34) by δt, letting δt → 0 and remembering that we are considering

a moving (Lagrangian) mass, so that the time derivative is D/Dt, not ∂/∂t, we then obtain

Q ≡ T
DS
Dt

= cp
DT
Dt

− 1
ρ

Dp
Dt

. (4.35)

This is one form of the First Law of Thermodynamics, as used in atmospheric physics. (It
is also commonly called the thermodynamic energy equation in meteorology.) The quantity
Q, defined by the first member of equation (4.35), is called the diabatic heating rate per
unit mass. For a blob in adiabatic (adiathermal and reversible) motion, Q = 0.5

The main physical processes contributing to Q in the lower and middle atmosphere
are latent heating and cooling (from condensation and evaporation, respectively, of water
vapour) and radiative heating and cooling (from absorption and emission of electromagnetic
radiation; see Chapter 3). Note that, if Q = 0,

DT
Dt

= 1
ρcp

Dp
Dt

, (4.36)

so, in the absence of diabatic heating, the temperature of a moving blob of air will increase
if it descends (moves to higher pressure) and will decrease if it ascends. Another way

5 The use of Q here is quite common in atmospheric physics; however, under reversible conditions, it would
be more consistent with the notation of Chapter 2, e.g. equation (2.19), to use lim(δQ/δt) = DQ/Dt for the
diabatic heating rate.
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of showing this is to note that, if the blob moves adiabatically, it conserves its potential
temperature, θ :

θ = T
(

p0

p

)κ

,

where κ = Ra/cp; see equation (2.25). As p increases, T has to increase as well, to keep θ

constant, which is consistent with equation (4.36).
It is frequently more convenient to work with potential temperature θ than with temper-

ature T ; in the presence of diabatic heating, the thermodynamic energy equation (4.35),
expressed in terms of θ , becomes

Dθ

Dt
= Q

cp

(
p
p0

)−κ

. (4.37)

Further reading

Good introductory textbooks on fluid dynamics in general are those by Tritton (1988), Faber
(1995) and Acheson (1990): the first two of these are specifically aimed at undergraduate
physicists. The basics of atmospheric fluid dynamics, including a treatment of pressure
coordinates, are covered well by Holton (2004). Marshall and Plumb (2008) provide a
very nice introduction to the dynamics of the atmosphere and the ocean, with strong
links to relevant laboratory experiments. Excellent advanced textbooks on atmospheric and
oceanic fluid dynamics, going well beyond the scope of the present book, are those of Vallis
(2006), Pedlosky (1987) and Gill (1982). For elementary kinetic theory of gases see, for
example, Blundell and Blundell (2009). The ‘reciprocity’ theorem of partial differentiation,
equation (4.30), is given, for example, by Blundell and Blundell (2009), Boas (1983) and
Lyons (1995).

Problems

Problem 4.1 Starting from the ideal gas law in the form (2.6), estimate the number of
molecules n/V of air per unit volume at ground level. Hence show that the mean separation
between molecules there is a few nanometres. Estimate also the mean free path, given
that it is of order V/(πd2n), where d is an effective molecular diameter. Comment on the
relevance of these estimates for the assumption that atmospheric flow may be described
as the motion of a continuous fluid. At what altitude might this assumption start to break
down?

Problem 4.2 Starting from the continuity equation in Eulerian form,

∂ρ/∂t + ∇ · (ρu) = 0,
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derive the Lagrangian form,
Dρ

Dt
+ ρ∇ · u = 0,

by vector manipulations. Give a physical interpretation of the latter equation in terms of the
rate of change of volume of a small moving ‘blob’ of fluid of fixed mass δm, by showing
that the relative rate of expansion of the blob’s volume equals the divergence of the velocity
field.

Problem 4.3 Consider planar motion. Suppose that the coordinates of a particle are (x, y)
in an inertial frame F and (x′, y′) in a frame F′ that rotates at a constant angular velocity �

with respect to F. Show that

x′ = x cos(�t) + y sin(�t), y′ = y cos(�t) − x sin(�t),

if x′ = x and y′ = y at t = 0.
Consider a particle that describes the following trajectory in F:

x(t) = R cos(�t) + a sin(�t) , y(t) = R sin(�t) + b cos(�t) ,

where R, a and b are positive constants. Show that the particle is undergoing two-
dimensional simple harmonic motion. Its trajectory in F takes the form of an ellipse; draw
a rough sketch of this ellipse, given that a = 0.4R and b = 0.8R, indicating the particle’s
direction of motion. (Hint: choose four appropriate values of �t.)

Now consider the particle’s trajectory, as viewed by an observer in the rotating frame
F′. Show that in this frame the particle moves in a circle; find the radius and centre of this
circle, and the particle’s angular velocity and direction of motion. By differentiating x′ and
y′ twice with respect to t, show that the particle’s motion in F′ is consistent with the effect
of a Coriolis force. (This is an example of an inertial oscillation; see Durran (1993) for a
detailed analysis.)

Problem 4.4 If a ball is thrown a horizontal distance of 100 m at 30◦ latitude in 4 s, what
is its sideways deflection due to the Coriolis force?

Problem 4.5 Evaluate the dimensionless parameter �2a/g for the Earth. Show that, at the
Earth’s surface, the magnitude |g′| of the effective gravity is about 0.7% less at the equator
than at the poles, and the maximum angle between g′ and a vector pointing towards the
centre of the Earth is about 0.1◦.

Problem 4.6 Estimate the Rossby numbers for the following flows and comment on your
results.

1. A hurricane at 20◦ N, with wind speed about 50 m s−1 and horizontal length scale about
100 km.

2. A tornado in the American Midwest, with wind speed about 100 m s−1 and horizontal
length scale about 100 m.

3. Flow in a bathtub vortex.
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Problem 4.7 Consider an atmospheric vortex in which the flow is steady, horizontal and
independent of height, with circular streamlines, in a frame rotating with angular velocity
� about the vertical. Neglecting friction, show that

u2

r
+ 2�u = 1

ρ

dp
dr

,

where r is the radial distance from the centre of the vortex, u(r) is the (tangential) wind
speed, p(r) is the pressure and ρ is the density (assumed constant).

Hence explain why highs are regions of weak pressure gradients and gentle winds,
but lows can have large pressure gradients and strong winds. Is the geostrophic wind an
overestimate or underestimate of the wind in a low-pressure system?

Problem 4.8 Atmospheric fronts are narrow regions of large horizontal temperature gra-
dient. A simple model takes the front to be a sloping surface across which the temperature
and along-front wind are discontinuous (with warm air overlying cold), but the pressure
and cross-front wind are continuous. Take the y-axis along the front and the x-axis point-
ing towards the cold air and apply the hydrostatic and geostrophic wind relationships to
the region AB in Figure 4.17. Hence show that the slope α at any level is related to the
temperatures T1 and T2 and along-front winds v1 and v2 at that level by

(T2 − T1)g tan α = f (v1T2 − v2T1).

If T2 − T1 = 3 K and v1 − v2 = 10 m s−1, estimate α at a latitude of 50◦ N.

Problem 4.9 Starting with the geostrophic and hydrostatic equations in pressure
coordinates, derive the thermal windshear relationship in the form

∂

∂p
(u, v) = Ra

f p

(
∂T
∂y

, −∂T
∂x

)
,

making clear which variables are held constant in each partial derivative. How does this
equation differ from the z-coordinate version?

Fig. 4.17 A simple model of a front.
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Fig. 4.18 A schematic weather map of a developing cyclone.

Introduce the variable Z = ln(p0/p), where p0 is a constant reference pressure, and
derive the thermal wind relationship using Z as a vertical coordinate.

The temperatures in the following table are derived from satellite measurements for
latitudes 50◦ N and 40◦ N and longitude 0◦ E. Given that the eastward wind at (45◦ N,
0◦ E) and a pressure of 10 hPa is 25 m s−1, estimate the eastward wind at (45◦ N, 0◦ E) at a
pressure of 1 hPa.

Pressure (hPa) 10 1
Temperature at 50◦ N (K) 217 252
Temperature at 40◦ N (K) 224 261

(Use the trapezoidal rule
∫ b

a F(Z) dZ ≈ 1
2 [F(a) + F(b)](b − a).)

Problem 4.10 Figure 4.18 is a schematic ‘weather map’ of a developing cyclone (in the
Northern Hemisphere) showing contours (isobars) of surface pressure in hPa and the regions
of cold and warm air at the surface (the latter is called the ‘warm sector’). Giving physical
justification, mark the directions of the geostrophic winds by arrows and the positions of
the cold ( ) and warm ( ) fronts. (Note: warm air follows cold in a warm
front and vice versa in a cold front.) Check that the changes in wind direction at the fronts
agree with the results of Problem 4.8.

Problem 4.11 Figure 4.19 is part of a North Atlantic weather chart, for the sector
10◦ W–35◦ W and 35◦ N–55◦ N, showing surface pressure (dashed contours, in hPa) and
the height of the 500 hPa surface (solid contours, in decametres; 1 decametre = 10 m). Show
that, near 1000 hPa, the pressure drops by about 8 hPa for every 60 m of vertical ascent
(take the density of air at the surface to be about 1.3 kg m−3). Hence show that the surface
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Fig. 4.19 Part of a North Atlantic weather chart.

isobars can be roughly re-interpreted as isopleths of the 1000 hPa height, and re-label them
accordingly on the chart (in decametres). Draw in contours of the thickness of the layer
between 1000 hPa and 500 hPa, and shade the region where the mean temperature of this
layer is largest. What is the name given to this region? What is its mean temperature?

Shade in the region of strongest geostrophic winds at 500 hPa and estimate the maximum
geostrophic wind speed there.



5 Further atmospheric fluid dynamics

In this chapter we build on the foundations laid in Chapter 4 by considering some more
advanced atmospheric fluid-dynamical concepts and studying simple models of observed
dynamical phenomena in the atmosphere. In Section 5.1 we introduce the important notions
of vorticity and potential vorticity. In Sections 5.2 and 5.3 we make some further simpli-
fications to the basic equations of motion, which allow us to set up simple models of two
types of atmospheric wave: the small-scale gravity wave (in Section 5.4) and the large-scale
Rossby wave (in Section 5.5). As mentioned in Chapter 1, waves are very important atmo-
spheric phenomena, not only because they are a common feature of observations, but also
because they allow one part of the atmosphere to ‘communicate’ with other, perhaps distant,
parts of the atmosphere. In Section 5.6 we look at atmospheric boundary layers, regions
near the Earth’s surface where frictional effects become important, and in Section 5.7 we
briefly touch on the important topic of atmospheric instability.

5.1 Vorticity and potential vorticity

The vorticity ω is defined as the curl of the velocity vector u = (u, v, w):

ω = ∇ × u =
(

∂w

∂y
− ∂v

∂z
,

∂u
∂z

− ∂w

∂x
,

∂v

∂x
− ∂u

∂y

)
.

In the special case of two-dimensional flow parallel to the x, y plane and independent of z,
so that u = (u(x, y), v(x, y), 0), the vorticity has only a z component:

ω = (0, 0, ξ), where ξ = ∂v

∂x
− ∂u

∂y
. (5.1)

The vorticity is a measure of the local (not global) rotation or ‘spin’ of the flow.1 This
fact is best illustrated by some simple examples:

(a) Consider two-dimensional circular flow, using plane polar coordinates r and ϕ, as
in Section 4.8.2, so that u = V (r)iϕ , where iϕ is the unit vector in the azimuthal
direction. It can be shown (see Problem 5.Problem 5.1) that the vorticity is in the z
direction, as in equation (5.1), with

ξ = dV
dr

+ V
r

. (5.2)

1 The word ‘spin’ is used in the sense of classical, not quantum, mechanics here.
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Consider two special cases.
• ‘Solid-body rotation’, in which the fluid rotates with the same angular velocity �

at all points, so that V = �r. In this case equation (5.2) implies that ξ = 2� =
constant.

• The ‘point vortex’, in which V ∝ r−1; in this case ξ = 0. (The origin r = 0 is
a singular point and must be excluded.) This is an example of a flow that we can
clearly regard as rotating in a global sense, but that has zero vorticity. Thus vorticity
is not a signature of global rotation.

(b) Now consider two-dimensional rectilinear shear flow in Cartesian coordinates: u =
(u(y), 0, 0). In this case ξ = −du/dy and is generally non-zero. Such a flow may be
regarded as ‘non-rotating’ in a global sense, but has non-zero vorticity. Again vorticity
is not directly linked with global rotation.

Vorticity as a local quantity may usefully be pictured in the following way. Imagine a
tiny hypothetical ‘vorticity meter’, consisting of four perpendicular vanes (see Figure 5.1),
which is placed in a two-dimensional flow with its axis in the z direction. The vanes tend
to be carried with the local flow; one vane is marked with a black dot, as shown. Close
examination shows that the angular velocity of the meter is equal to half the local value of
the vorticity.

When it is placed in the solid-body rotation, the meter revolves in a circular orbit, as
shown in Figure 5.2(a). Moreover, the azimuthal flow near the outer vane is faster than that
near the inner vane, by just such an amount as to give the vane a single rotation per orbit.
The meter spins with angular velocity �, equal to half the vorticity ξ .

When it is placed in the point vortex, however, the meter remains aligned with its original
orientation as it orbits; see Figure 5.2(b). In this case the flow near the outer vane is less
than that near the inner vane, by just such an amount as to keep the meter aligned. The
meter has zero spin, which is consistent with the zero vorticity of the flow.

In the case of the rectilinear shear flow (Figure 5.2(c)), with u = By, where B is a positive
constant, the flow near the upper vane in the diagram is faster than that near the lower vane.
The meter spins in a clockwise sense, with negative angular velocity, which is consistent
with the vorticity ξ being −B here.

Fig. 5.1 A hypothetical ‘vorticity meter’. Adapted from Acheson (1990).
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Fig. 5.2 The behaviour of a hypothetical vorticity meter in (a) solid-body rotation, (b) a point vortex and
(c) rectilinear shear flow. Adapted from Acheson (1990).

The concept of vorticity may be extended to rotating frames. Putting A = r in equation
(4.18), we obtain the relationship between the velocities in an inertial frame and a rotating
frame:

uI = uR + � × r,

where uI is the velocity in the inertial frame and uR is the velocity in the rotating frame.
Taking the curl and using the vector identity

∇ × (a × b) = (b · ∇)a − (a · ∇)b + a(∇ · b) − b(∇ · a), (5.3)

where a and b are vector functions of position, we obtain

ωI = ωR + 2�. (5.4)

Thus the vorticity vector in the inertial frame (the absolute vorticity) is that in the rotating
frame (the relative vorticity) plus twice the rotation vector. This is consistent with the
two-dimensional solid-body rotation result above, where we can regard the flow as being
at rest in a frame rotating with angular speed �.

The concept of potential vorticity is more complex and will only be touched on
here. The potential vorticity (sometimes called the Rossby–Ertel potential vorticity) is
defined as

P = ωI · ∇θ

ρ
, (5.5)

where θ is the potential temperature and ρ the fluid density. Given the Navier–Stokes
equation (4.20), the mass-continuity equation (4.8) and the thermodynamic equation (4.37),
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it can be shown that the potential vorticity satisfies an equation of the form

DP
Dt

= terms involving friction and diabatic heating.

A corollary of this result is that, in the absence of friction and diabatic heating, the right-
hand side vanishes and the potential vorticity is materially conserved: in other words, each
fluid blob retains a fixed value of potential vorticity as it moves around and the potential
vorticity acts as a tracer of fluid motion. Together with other properties, this makes the
potential vorticity a very useful fluid-flow quantity, which has been used in numerous
studies as a diagnostic of atmospheric motion.

5.2 The Boussinesq approximation

In Chapter 4 we derived the following set of equations for atmospheric flow, valid on a
sphere, f -plane or β-plane: the momentum equations

Du
Dt

− f v + 1
ρ

∂p
∂x

= F(x), (5.6a)

Dv

Dt
+ f u + 1

ρ

∂p
∂y

= F(y), (5.6b)

Dw

Dt
+ 1

ρ

∂p
∂z

+ g = 0, (5.6c)

the mass-continuity equation

Dρ

Dt
+ ρ∇ · u = 0, (5.6d)

the ideal gas law

p = RTρ (5.6e)

and the thermodynamic energy equation

cp
DT
Dt

− 1
ρ

Dp
Dt

= Q. (5.6f)

In equations (5.6a) and (5.6b) f = 2� sin φ if spherical coordinates are used, f = f0 on an
f -plane and f = f0 + βy on a β-plane.

These equations are still quite complicated, so we now introduce the Boussinesq approx-
imation, which further simplifies the mathematics while retaining much of the important
physics. It is motivated by the fact that compressibility effects in the atmosphere may be
neglected for many purposes, except when considering layers whose depths are greater
than the density scale height, over which the density falls by a factor of e. In particular,
sound waves may be ignored for meteorological purposes. Taking the atmosphere to be
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incompressible (see the end of Section 4.3) implies that equation (5.6d) decouples into two
equations,

∇ · u = 0, (5.7)

Dρ

Dt
= 0. (5.8)

Equation (5.8) states that, for incompressible flow, the density is constant on following a
moving fluid blob. However, this does not imply that the density is uniform everywhere;
we must still allow for vertical density stratification. It is convenient to separate the density
into a ‘background’ part ρ̄ that depends only on height z and a deviation ρ′:

ρ(x, y, z, t) = ρ̄(z) + ρ′(x, y, z, t) (5.9)

with a similar separation for the pressure:

p(x, y, z, t) = p̄(z) + p′(x, y, z, t).

We now approximate the vertical momentum equation (5.6c) by hydrostatic balance, as in
equation (4.25):

∂p
∂z

= −gρ. (5.10)

If we assume that the background state itself satisfies hydrostatic balance,

dp̄
dz

= −gρ̄,

then equation (5.10) implies that the deviation also satisfies hydrostatic balance:

∂p′

∂z
= −gρ′. (5.11)

Substitution of equation (5.9) into the density equation (5.8) leads to

Dρ′

Dt
+ w

dρ̄

dz
= 0. (5.12)

This states that the density deviation ρ′ of a blob changes as the blob moves up or down in
the background density gradient dρ̄/dz. By analogy with equation (2.31) we introduce the
quantity

N2
B = − g

ρ0

dρ̄

dz
, (5.13)

where ρ0 = ρ̄(0), say, a reference value of the background density. NB(z) is the buoyancy
frequency for the stratified, incompressible fluid. Then equation (5.12) can be written

g
Dρ′

Dt
− ρ0N2

Bw = 0. (5.14)

The Boussinesq approximation is now implemented by ignoring density variations
except where they are coupled with gravity; that is, we replace ρ by the constant value ρ0
in the horizontal momentum equations (5.6a) and (5.6b) but retain the full density variation
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(and in particular the deviation ρ′) in equations (5.11) and (5.14). We therefore obtain the
following Boussinesq equations:2

Du
Dt

− f v + 1
ρ0

∂p
∂x

= F(x), (5.15a)

Dv

Dt
+ f u + 1

ρ0

∂p
∂y

= F(y), (5.15b)

∂u
∂x

+ ∂v

∂y
+ ∂w

∂z
= 0, (5.15c)

D
Dt

(
−gρ′

ρ0

)
+ N2

Bw = 0, (5.15d)

∂p′

∂z
= −gρ′. (5.15e)

It should be noted that, under the Boussinesq approximation, the thermodynamics
becomes decoupled from the dynamics. If equations (5.15) are solved, however, we can
obtain the temperature using the ideal gas law

T = p̄ + p′

Ra(ρ̄ + ρ′)
.

A ‘mass source’ term is sometimes added to the right-hand side of equation (5.15d), by
analogy with the diabatic heating Q that appears in the thermodynamic energy equation.

5.2.1 Linearised equations and energetics

Because of the presence of the (u·∇) term in the material derivative D/Dt, equations (5.15)
are non-linear and therefore difficult to solve analytically. Non-linear equations of this type
are routinely solved on computers, for example in weather forecasting; however, numerical
solutions are often difficult to interpret physically. We therefore now make the further
approximation of linearising these equations, so that solutions can be found and analysed.

We assume that velocities and density deviations are ‘small’, in the sense that terms
that are quadratic in these quantities and their derivatives can be neglected. For example,
equation (5.15d) can be expanded as

− g
ρ0

(
∂ρ′

∂t
+ u

∂ρ′

∂x
+ v

∂ρ′

∂y
+ w

∂ρ′

∂z

)
+ N2

Bw = 0,

where the quadratic terms are underlined. If these are dropped we get

− g
ρ0

(
∂ρ′

∂t

)
+ N2

Bw = 0,

2 These equations are very similar in form to the full equations in pressure coordinates: see Section 4.9.
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which is linear in ρ′ and w. The full set of Boussinesq equations, linearised in this way and
with friction neglected, is

ut − f v + 1
ρ0

p′
x = 0, (5.16a)

vt + f u + 1
ρ0

p′
y = 0, (5.16b)

ux + vy + wz = 0, (5.16c)

− g
ρ0

ρ′
t + N2

Bw = 0, (5.16d)

p′
z + gρ′ = 0. (5.16e)

(The incompressibility condition (5.16c) and hydrostatic equation (5.16e) were already
linear and needed no further approximation here.) Note that we have introduced the useful
shorthand notation of denoting partial derivatives with respect to x, y, z and t by subscripts.

An important result can be obtained by multiplying equation (5.16a) by ρ0u, equation
(5.16b) by ρ0v and equation (5.16d) by −gρ′/N2

B and then adding the results. A short
calculation gives the energy equation

∂

∂t
1
2
ρ0

[
u2 + v2 +

(
gρ′

ρ0NB

)2
]

+ ∇ · (
up′) = 0. (5.17)

In this equation, ρ0(u2+v2)/2 is clearly the kinetic energy per unit volume of the horizontal
motion, while the term involving (ρ′)2 can be identified as the available potential energy
(with respect to a reference state at rest, with density ρ̄ and pressure p̄: see Section 2.6).
The term up′ can be interpreted as an energy flux (analogous to the Poynting vector in
electromagnetism). Overall, the equation states that the energy (kinetic plus available
potential) within a volume increases if there is an energy flux into the volume and decreases
if there is an energy flux out of the volume. Similar, but more complicated, versions
of equation (5.17) apply for the nonlinear Boussinesq equations (5.15) and the nonlinear
compressible equations (5.6).

5.3 Quasi-geostrophic motion

In Section 4.8 we derived the geostrophic approximations to equations (5.6a) and (5.6b).
Under the Boussinesq approximation, neglecting variations of f , geostrophic balance can
be expressed by

u ≈ ug = −∂ψ

∂y
, v ≈ vg = ∂ψ

∂x
, (5.18)

where ψ is the geostrophic streamfunction, defined by

ψ ≡ p′

f0ρ0
. (5.19)
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(See equations (4.26a), (4.26b) and note that we can use p′ rather than p in equation (5.19)
since the horizontal derivatives of p̄(z) vanish.) The velocity vector (ug, vg, 0) is called the
geostrophic flow. From equations (5.18)

∂ug

∂x
+ ∂vg

∂y
= 0,

so by comparison with the incompressibility condition (5.15c) we can see that any vertical
velocity wg associated with the geostrophic flow must be independent of z. It is therefore
zero everywhere if it vanishes at one level, say, at the ground z = 0.

Note that, using the geostrophic streamfunction ψ , hydrostatic balance (5.15e) can be
written as

ρ′ = − f0ρ0

g
∂ψ

∂z
. (5.20)

We now seek a better approximation to the nonlinear Boussinesq equations (5.15) than
that given by pure geostrophic balance. One way to do this is to introduce the ageostrophic
velocity, the difference between the true velocity and the geostrophic flow, with components

ua ≡ u − ug, va ≡ v − vg, wa ≡ w.

It can then be shown that the next approximation beyond geostrophic balance is given, on
a β-plane and neglecting friction, by the quasi-geostrophic equations

Dgug − f0va − βyvg = 0, (5.21a)

Dgvg + f0ua + βyug = 0, (5.21b)

∂ua

∂x
+ ∂va

∂y
+ ∂wa

∂z
= 0, (5.21c)

Dg

(
−gρ′

ρ0

)
+ N2

Bwa = 0. (5.21d)

Here

Dg ≡ ∂

∂t
+ ug

∂

∂x
+ vg

∂

∂y
is the time derivative following the geostrophic flow. The quasi-geostrophic equations hold
in general for large-scale, low-frequency motions, except in low latitudes; in particular they
require that the Rossby number (see equation (4.27)) should be small:

Ro ≡ U
f L

� 1, (5.22)

and that time scales should be large compared with 1/f0 (a few hours, except in low
latitudes). They provide a useful model for investigating many types of large-scale motion
that are observed in the atmosphere.

Equations (5.21) can conveniently be combined as follows. First take ∂/∂x(5.21b) –
∂/∂y(5.21a) and use the mass-continuity equation (5.21c), to obtain (after careful
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Fig. 5.3 Illustrating the ‘stretching’ mechanism of absolute vorticity generation. The cylindrical blob of
fluid on the left experiences stretching in the vertical owing to the differential vertical velocities
(indicated by the vertical arrows), and shrinking in the horizontal associated with convergent
horizontal velocities (indicated by the horizontal arrows). Its vertical absolute vorticity is indicated
by the curved arrows. It is deformed by the velocity field into the shape shown on the right, and
at the same time its vertical absolute vorticity increases.

manipulation) the vorticity equation

Dgζ = f0
∂wa

∂z
, (5.23)

where

ζ ≡ f0 + βy − ∂ug

∂y
+ ∂vg

∂x
= f0 + βy + ∂2ψ

∂x2 + ∂2ψ

∂y2

is the z component of the absolute vorticity associated with the geostrophic flow; cf.
equation (5.4).

The term on the right-hand side of equation (5.23) is called the stretching term, since
it can generate vorticity by differential vertical motion. Consider a cylindrical blob of air,
moving with the geostrophic flow: see Figure 5.3. If the blob enters a region where the
vertical velocity wa increases with height, it is stretched vertically. Since its mass must be
conserved it shrinks in the horizontal direction,3 consistent with there being a horizontal
convergence of velocity; see equation (5.21c). Equation (5.23) states that the z component
of the absolute vorticity ζ of the blob must increase (in the Northern Hemisphere, where
f0 > 0) by this stretching mechanism. Conversely a cylindrical blob that is squashed in the
vertical direction will suffer a decrease in ζ .

3 Remember that, under the Boussinesq approximation, the fluid is incompressible.
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Now note that, using equations (5.21d) and (5.20), the vertical velocity can be
expressed as

wa = Dg

(
gρ′

ρ0N2
B

)
= −Dg

(
f0

N2
B

∂ψ

∂z

)
; (5.24)

substitution of this expression into the vorticity equation (5.23) and further careful
manipulation lead finally to the quasi-geostrophic potential vorticity equation

Dgq = 0, (5.25)

where

q ≡ ζ + ∂

∂z

(
f 2
0

N2
B

∂ψ

∂z

)
= f0 + βy + ∂2ψ

∂x2 + ∂2ψ

∂y2 + ∂

∂z

(
f 2
0

N2
B

∂ψ

∂z

)
(5.26)

is the quasi-geostrophic potential vorticity (QGPV). When friction and diabatic heating
(or mass sources) are neglected, as here, the QGPV is constant following the geostrophic
flow. We can ‘forecast’ the future behaviour of the QGPV by integrating equation (5.25)
forwards in time if the current values of the QGPV and the geostrophic flow are known at all
points. Moreover, the QGPV carries information about the geostrophic flow and the density,
since the elliptic operator (analogous to ∇2) on the right-hand side of equation (5.26) can
be inverted, given suitable boundary conditions, to give ψ and hence p′, ug, vg and ρ′,
using equations (5.19), (5.18) and (5.20).

The QGPV is somewhat analogous to the Rossby–Ertel potential vorticity (5.5), which
is, however, constant following the total flow u in the absence of friction and diabatic
heating.

5.4 Gravity waves

It was noted in Chapter 1 that wave-like motions are frequently observed in the atmosphere.
One such wave is the gravity wave: examples of gravity waves include the lee waves
that are often manifested as parallel bands of cloud downstream of mountain ranges;
see Figure 5.4. Another example, derived from ground-based radar measurements and
demonstrating ‘waviness’ (though not precisely sinusoidal behaviour) in time, is given in
Figure 1.7.

The linear Boussinesq equations (5.16) are a suitable set from which to develop models of
gravity waves. As in modelling other wave motions in physics (e.g. electromagnetic waves
as solutions of Maxwell’s equations), it is simplest to look for plane-wave solutions of
equations (5.16). First, however, we restrict our attention to motions of comparatively small
horizontal scale (for example, �100 km) so that the rotation of the Earth has a negligible
effect. This allows us to simplify the equations by neglecting the Coriolis terms (i.e. by
putting f = 0) in equations (5.16a) and (5.16b). We also assume that NB is independent
of z: this is a fairly reasonable assumption both for the troposphere and for the stratosphere.
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Fig. 5.4 A schematic cross-section through a lee wave (or mountain wave), an internal gravity wave that
may form when a stratified airflow blows over a mountain range. The wavy arrow indicates one
particular streamline of the flow. The wave motion appears over and downstream of the mountain
and may be made visible by clouds that form as water vapour in the moving air parcels condenses
in the rising parts of the flow. The clouds disperse as the air parcels descend and the water
evaporates again. Note that the wave pattern and clouds are stationary with respect to the
mountain, but that the air-flow blows through them.

We seek plane waves, propagating in the x, z plane and independent of y, of the form{
u, v, w, p′, ρ′} = Re

{
û, v̂, ŵ, p̂, ρ̂

}
exp[i(kx + mz − ωt)], (5.27)

where û, etc. are complex amplitudes. Substitution of expressions (5.27) into the linear
partial differential equations (5.16) then yields the algebraic equations

−iωû + ikp̂/ρ0 = 0, (5.28a)

−iωv̂ = 0, (5.28b)

ikû + imŵ = 0, (5.28c)

iωgρ̂/ρ0 + N2
Bŵ = 0, (5.28d)

imp̂ + gρ̂ = 0. (5.28e)

It is straightforward to eliminate, say, û, v̂, ŵ and ρ̂ in favour of p̂; arbitrarily choosing p̂
to be real, we then get

p′ = p̂ cos(kx + mz − ωt), (5.29a)

u = kp̂
ρ0ω

cos(kx + mz − ωt), (5.29b)

v = 0, (5.29c)

w = − k2p̂
ρ0ωm

cos(kx + mz − ωt), (5.29d)

ρ′ = mp̂
g

sin(kx + mz − ωt). (5.29e)
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These are called the polarisation relations for the waves. Note that u, w and p′ are in
phase (or 180◦ out of phase) with each other and 90◦ out of phase with ρ′, and that v = 0
for these y-independent waves. The condition for the algebraic equations (5.28) to possess
a non-trivial solution gives the dispersion relation, relating the angular frequency ω to the
wave-vector components k and m, for internal gravity waves:

ω2 = N2
Bk2

m2 . (5.30)

On taking the square root we obtain the two possible solutions

ω = ±NBk
m

. (5.31)

To understand the physical difference between these two solutions, we must introduce
the vector group velocity

cg = (
c(x)

g , 0, c(z)
g

) =
(

∂ω

∂k
, 0,

∂ω

∂m

)
; (5.32)

in particular the vertical component of the group velocity, c(z)
g , is

c(z)
g = ∂

∂m

(
±NBk

m

)
= ∓NBk

m2 . (5.33)

We now adopt the convention that k is positive.4 For an atmospheric internal gravity wave
generated near the ground and propagating information upwards, we must have c(z)

g > 0,
so the lower sign must be chosen both in equation (5.33) and in equation (5.31), which then
becomes

ω = −NBk
m

.

If also ω > 0, we have m < 0 and the phase relations between the velocity, density and
pressure disturbances due to the waves may be summarised as in Figure 5.5.

Several features should be noted here.

• For this choice of signs, the phase surfaces kx + mz − ωt = constant move obliquely
downwards in time, in the direction of the wave-vector k = (k, 0, m). However, the
propagation of information, represented by the group velocity vector cg, is obliquely
upwards.

• The velocity vector (u, 0, w) is parallel to the slanting phase surfaces: fluid blobs (or
parcels) oscillate up and down these surfaces.

• The precise phase relations between the velocity, density and pressure disturbances may
be verified from the polarisation relations (5.29).

The hydrostatic assumption is equivalent to neglecting a term ρ0 ∂w/∂t compared with
gρ′, say, in the linear equation (5.16e). From the polarisation relations (5.29d) and (5.29e)

4 The following analysis may be repeated with the convention k < 0; certain changes of sign must be made in
the analysis, but the physical content of the resulting equations is unchanged.
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Fig. 5.5 A vertical cross-section through a plane internal gravity wave with k > 0, ω > 0 and m < 0 so
that c(z)

g > 0, as in the text. The thin sloping lines represent surfaces of constant phase, separated
perpendicularly from one another by a quarter-wavelength. The phase surfaces on which the
density and pressure disturbances take their greatest positive and negative values are marked.
The phase surfaces in which the velocity vectors (which are themselves parallel to the phase
surfaces) have their greatest upward and downward components are marked by long black
arrowheads in the appropriate directions. The regions of upward motion are shaded. The thick
arrow sloping obliquely upwards indicates the direction of the group velocity vector cg and the
thick arrow sloping obliquely downwards indicates the direction of the wave-vector k = (k, 0, m).
The phase surfaces move perpendicular to themselves, in the direction of k, as time progresses.

it can be seen that this is valid if k2 � m2, i.e. if vertical wavelengths are much less than
horizontal wavelengths. Equation (5.30) then shows that ω2 � N2

B under this condition,
so the hydrostatic internal gravity waves we have been considering must have angular
frequencies much less than the buoyancy frequency NB. Even for non-hydrostatic waves
it turns out that ω2 ≤ N2

B; typical values of the minimum period 2π/NB are 8 min for the
troposphere and 5 min for the stratosphere.

A useful connection can be made here with the analysis of Section 2.5, in which the
buoyancy frequency N in a compressible, stably stratified fluid was shown to be the
frequency at which a parcel (or blob) of fluid oscillates vertically up and down. We have
just seen that, in an internal gravity wave, fluid blobs do not move purely vertically, but
are constrained to move along the sloping phase surfaces. These surfaces make an angle α

with the horizontal, where sin2 α = k2/(k2 + m2); see Figure 5.6. Consider a blob of unit
mass: under the Boussinesq approximation its volume V remains constant and its density is
approximately ρ0, so that ρ0V ≈ 1. If this blob moves a vertical distance δz upwards from
its equilibrium position and hence a distance δz/sin α along the slope, then its density is
ρ0N2

Bδz/g greater than that of its surroundings, by equation (5.13). It therefore experiences
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Fig. 5.6 An illustration of the motion of a fluid blob in a plane internal gravity wave. The sloping line on
the left of the diagram indicates a sloping phase surface. The open circle indicates the equilibrium
position of the blob and the solid circle its displaced position. The inset triangle on the right of the
diagram shows the wave-vector k = (k, 0, m), which is perpendicular to the phase surface.

a downward buoyancy force N2
Bδz, which has a component −N2

B sin α δz up the sloping
phase surface. Its acceleration up the slope is

d2

dt2

(
δz

sin α

)
,

so, by Newton’s Second Law,

d2

dt2

(
δz

sin α

)
+ N2

B sin α δz = 0

(cf. equation (2.30)). This implies an oscillation whose angular frequency ω is given by

ω2 = N2
B sin2 α = N2

Bk2

k2 + m2 ≈ N2
Bk2

m2

(the approximation holding for hydrostatic waves), in agreement with the dispersion
relation (5.30).

In this section we have concentrated on internal gravity waves, the class of gravity waves
whose horizontal scales are so small that the Earth’s rotation can be neglected. A similar
study can be carried out for waves of somewhat larger scale (horizontal wavelengths of
hundreds of kilometres) and somewhat lower frequency (periods of several hours), which do
feel the Earth’s rotation; these are called inertia–gravity waves. (The waves in Figure 1.7
are of this type.) An example is given in Problem 5.4.

5.5 Rossby waves

A further class of atmospheric wave is observed on horizontal scales of thousands of
kilometres and with periods of several days. These are known as Rossby waves or planetary
waves: an example is shown in Figure 1.8. These are even more difficult to identify
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unambiguously than gravity waves, since a purely sinusoidal Rossby-wave structure can
exist only in very simple background flows. However, they are conceptually very important
for our understanding of many large-scale atmospheric phenomena.

Since atmospheric Rossby waves occur on large horizontal wavelengths and with low
frequencies, they have low Rossby numbers (see equations (4.27) and (5.22)). It is there-
fore reasonable to try to model them using the quasi-geostrophic equations developed in
Section 5.3. We consider small-amplitude disturbances to a uniform zonal background flow
(U , 0, 0), where U is a constant; by equation (5.18) this uniform flow corresponds to a
geostrophic streamfunction Ψ = −Uy. For the total flow (the background plus a small
disturbance) we therefore take

ψ = −Uy + ψ ′,
substitute into the QGPV equation (5.25) and neglect terms that are quadratic in ψ ′.

The QGPV for this flow is

q = f0 + βy + Lψ ′, (5.34)

where L is the elliptic operator

L = ∂2

∂x2 + ∂2

∂y2 + ∂

∂z

(
f 2
0

N2
B

∂

∂z

)
,

and the QGPV equation (5.25) linearises to(
∂

∂t
+ U

∂

∂x

)
Lψ ′ + β

∂ψ ′

∂x
= 0. (5.35)

We take NB to be constant, for simplicity, and look for plane-wave solutions to this equation
as in Section 5.4 (but now allowing variations in y as well) by substituting

ψ ′ = Re ψ̂ exp[i(kx + ly + mz − ωt)],
where ψ̂ is a complex amplitude. We obtain the dispersion relation for Rossby waves:

ω = kU − βk
k2 + l2 + f 2

0 m2/N2
B

. (5.36)

In simple modelling it is common for k, l and ω to be specified in advance, so that the
vertical wavenumber m can then be found from equation (5.36):

m = ±NB

f0

(
β

U − (ω/k)
−

(
k2 + l2

))1/2
. (5.37)

Several features are immediately evident from the dispersion relation (5.36):

• The β-effect is crucial to the existence of these waves: putting β = 0 in equation (5.36)
gives ω = kU , which corresponds to ‘waves’ that are merely carried along with the
background flow U .

• Equation (4.24) shows that β > 0. The zonal phase speed of the waves,

c ≡ ω

k
= U − β

k2 + l2 + f 2
0 m2/N2

B
,
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therefore always satisfies

U − c > 0; (5.38)

that is, the wave crests and troughs (which move with the phase speed) move westward
with respect to the background flow.

• For given real values of the horizontal wavenumbers k and l, we get vertical propagation if
m is real and non-zero (and vertical evanescence if m is imaginary). Vertical propagation
therefore corresponds to m2 > 0 and this implies that

U − c = β

k2 + l2 + f 2
0 m2/N2

B
< Uc ≡ β

k2 + l2
, (5.39)

where Uc depends on the horizontal wavelengths of the wave. Putting equations (5.38)
and (5.39) together, we therefore find that for vertical propagation we must have

0 < U − c < Uc.

In particular, for stationary waves, whose crests and troughs do not move with respect
to the ground (which will be true for waves forced by the background flow moving
over continent-scale topography or stationary heat sources) so that c = 0, we obtain the
Charney–Drazin criterion

0 < U < Uc. (5.40)

This states that stationary waves propagate vertically only in eastward background flows
(U > 0) that are not too strong (U < Uc); moreover, since Uc increases with increasing
horizontal wavelength, ‘long waves’ propagate vertically under a wider range of east-
ward flows than do ‘short waves’. This is consistent with observations in the Northern
Hemisphere winter stratosphere, where winds are eastward and stationary Rossby waves
have large horizontal scales, and with observations of the summer stratosphere, where
winds are westward and stationary Rossby waves are absent.

• Rossby waves with large horizontal scales have small values of k2 + l2 and their zonal
phase speed approaches

clong = U − βN2
B

f 2
0 m2

,

whereas Rossby waves with short horizontal scales have large values of k2 + l2 and their
zonal phase speed approaches the speed U of the background flow. This strong variation
of phase speed with wavelength implies that the waves are strongly dispersive: an initial
disturbance composed of a number of different wavelengths will tend to break up, or
disperse, in time, as the various wavelength components propagate away at different
phase speeds.

• We can define a group velocity vector

cg = (
c(x)

g , c(y)
g , c(z)

g
) =

(
∂ω

∂k
,

∂ω

∂l
,

∂ω

∂m

)
,
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as for gravity waves (equation (5.32)), except that here ω is taken to depend on l as well
as on k and m, so cg will have a non-zero y component.5 In particular, we find

c(z)
g = ∂ω

∂m
= 2f 2

0 βkm

N2
B

(
k2 + l2 + f 2

0 m2

N2
B

)2 ;

if we choose k > 0 by convention, we see that the vertical component of the group
velocity is positive and that the waves propagate information upwards, if m > 0: this
determines the choice of sign in equation (5.37). For upward-propagating waves the
phase surfaces kx + ly + mz − ωt = constant slope westward with height: this slope is
observed for Rossby waves in the stratosphere.

A further possibility occurs when the waves are independent of height: this is equivalent
to taking m = 0 above. Suppose also that there is no background flow, so that U = 0; then
equation (5.36) reduces to

ω = − βk
k2 + l2

and the phase speed c = ω/k is westward, which is consistent with equation (5.38). This
result can also be obtained by a physical argument, based on vorticity, as follows.

When there is no z dependence, the disturbance part of the QGPV,Lψ ′ in equation (5.34),
reduces to the disturbance vorticity,

ξ ′ = ∂2ψ ′

∂x2 + ∂2ψ ′

∂y2 ;

cf. equation (5.26). The total QGPV is then q = f0 + βy + ξ ′, of which f0 + βy is the
background contribution due to the Earth’s rotation and spherical geometry, represented by
the β-effect. However, from equation (5.25) q is conserved following fluid blobs (assuming
that they move essentially with the geostrophic flow). Therefore a northward-moving blob,
which encounters an increasing f0 + βy, must lose some of its disturbance vorticity ξ ′,
whereas a southward-moving blob must gain some ξ ′.

In the special case where l = 0, we have u′
g = 0 and blobs move purely in the north–

south direction. Consider a line of blobs, labelled A, B, C, etc., initially lying along
a line of latitude y = y0; see Figure 5.7. Suppose that these blobs are displaced into
the sinusoidal pattern indicated by the solid wavy line: blob A moves southwards, so
its value of ξ ′ increases, as indicated by the anticlockwise arrow in the figure. By the
QGPV inversion process mentioned at the end of Section 5.3 this induces an anticlockwise
rotation in the local velocity field, as indicated by the circular arrow; in particular, blob
B is encouraged to move further south. The value of ξ ′ associated with blob B itself
increases, inducing anticlockwise rotation near B, which tends to move C southwards and
A northwards again. Applying this kind of argument to each blob, we find that, after a short

5 For stationary waves we must put c = ω = 0 after differentiation. Note that these waves can still propagate
information, even though their phase surfaces do not move: this is another consequence of their dispersive
nature.
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Fig. 5.7 Illustrating the Rossby-wave mechanism, in terms of conservation of potential vorticity by moving
fluid blobs in the case in which the waves are independent of height. See the text for details.

time, the pattern of the blobs has moved westwards, to the position indicated by the dashed
wavy line, even though each individual blob only oscillates north–south. A self-sustaining,
westward-moving Rossby-wave pattern emerges, as expected from the theory given above.

5.6 Boundary layers

5.6.1 General considerations

So far in this chapter we have ignored the effects of friction in the atmosphere. This is
reasonable in the models of linear internal gravity waves and Rossby waves investigated
in the previous sections, since friction usually has only a small influence on these waves.
However, frictional effects can sometimes be very important, especially in the lowest
kilometre or so of the atmosphere. This region is sometimes called the atmospheric
boundary layer – a terminology that echoes the use of ‘boundary layer’ in fluid dynamics
to mean a thin, frictionally controlled layer near a boundary.

In the derivation of the Navier–Stokes equation (4.17) in Chapter 4 we included the effects
of molecular viscosity. However, for most atmospheric purposes, the molecular viscosity
is far too small to influence the dynamics directly. On the other hand, small-scale eddies
can lead to a momentum transfer that in some respects resembles molecular momentum
transfer. As we shall see later, this small-scale eddy transport is sometimes represented in
terms of an ‘eddy viscosity’ that is similar to, but much larger than, the molecular viscosity.
There are serious problems with this approach, though; for example, small-scale eddies
may have organised structures, quite unlike the random nature of molecules, and may under
some circumstances even imply a negative eddy viscosity. We shall therefore progress as
far as possible without explicit use of the eddy-viscosity concept.

We consider the frictional stress τ due to small-scale processes (with scales of a few
hundred metres or less) acting on the larger scales of motion in the atmosphere and assume
that this stress is horizontal:

τ =
(
τ (x), τ (y), 0

)
.
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As in equation (4.14), the vertical gradient of τ implies a horizontal force per unit mass on
the larger scales, given by

F(x) = 1
ρ0

∂τ (x)

∂z
, F(y) = 1

ρ0

∂τ (y)

∂z
, (5.41)

in the Boussinesq approximation. On substituting equations (5.41) into the f -plane versions
of the Boussinesq horizontal momentum equations, (5.15a) and (5.15b), and linearising,
we obtain

∂u
∂t

− f0v = − 1
ρ0

∂p
∂x

+ 1
ρ0

∂τ (x)

∂z
, (5.42a)

∂v

∂t
+ f0u = − 1

ρ0

∂p
∂y

+ 1
ρ0

∂τ (y)

∂z
. (5.42b)

We write the horizontal velocity components as

u = up + uτ , v = vp + vτ , (5.43)

where the subscript p denotes the pressure-driven flow, satisfying
∂up

∂t
− f0vp = − 1

ρ0

∂p
∂x

, (5.44a)

∂vp

∂t
+ f0up = − 1

ρ0

∂p
∂y

(5.44b)

and the subscript τ denotes the frictional stress-driven flow, satisfying

∂uτ

∂t
− f0vτ = 1

ρ0

∂τ (x)

∂z
, (5.45a)

∂vτ

∂t
+ f0uτ = 1

ρ0

∂τ (y)

∂z
. (5.45b)

This separation can be made since equations (5.42) are linear.
We now assume that the frictional stress is important only in a boundary layer of depth

D above flat ground at z = 0; thus τ (x) and τ (y) are non-zero for 0 ≤ z < D but vanish for
z ≥ D, in the ‘free atmosphere’; see Figure 5.8. Integrating equations (5.45) through the
depth of the boundary layer, we then get

∂Uτ

∂t
− f0Vτ = − 1

ρ0
τ

(x)
0 , (5.46a)

∂Vτ

∂t
+ f0Uτ = − 1

ρ0
τ

(y)
0 , (5.46b)

where

Uτ =
∫ D

0
uτ dz, Vτ =

∫ D

0
vτ dz

are called the Ekman volume transports, representing the horizontal fluxes of volume
within the boundary layer, and τ

(x)
0 and τ

(y)
0 are the surface stresses, exerted by the ground on
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Fig. 5.8 A schematic illustration of the frictional boundary layer, with the free atmosphere above. The
dashed line indicates the notional top of the boundary layer. Note that horizontal convergence in
the boundary layer (indicated by the lightly shaded arrows) is balanced by flow out of the top of
the boundary layer (indicated by the darker arrow). This is the Ekman pumping or suction effect.

the lowest layer of the atmosphere. If the flow is steady, with ∂/∂t = 0, then equations (5.46)
give

(Uτ , Vτ , 0) = 1
ρ0 f0

(
−τ

(y)
0 , τ (x)

0 , 0
)

= 1
ρ0 f0

k × τ 0, (5.47)

where k = (0, 0, 1) is the unit vertical vector, and hence show that the Ekman volume
transport in the boundary layer is perpendicular to the surface stress. It is important to
note that this result does not depend on the details of the vertical variation of the frictional
stresses (other than that they vanish above the boundary layer) or on any ‘eddy viscosity’
assumption.

Turning now to the pressure-driven flow, equations (5.44) show that, when this flow is
steady, it must also be geostrophic:

up = − 1
ρ0 f0

∂p
∂y

, vp = 1
ρ0 f0

∂p
∂x

;

cf. equations (4.26a) and (4.26b). Then the incompressibility condition (5.15c) implies that
the vertical velocity depends only on the stress-driven flow:

∂w

∂z
= −

(
∂u
∂x

+ ∂v

∂y

)
= −

(
∂uτ

∂x
+ ∂vτ

∂y

)
. (5.48)

Integration of equation (5.48) through the depth of the boundary layer yields

[
w

]D
0 = −

(
∂Uτ

∂x
+ ∂Vτ

∂y

)
; (5.49)

the term on the right-hand side of this equation represents the horizontal convergence of
the Ekman volume transport. The ground is flat, so w = 0 at z = 0, and, since the
fluid is assumed incompressible, the horizontal convergence in the boundary layer must
be balanced by an upward flow wD out of the top of the boundary layer, at z = D;
see Figure 5.8. Conversely, horizontal divergence in the boundary layer is balanced by a
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downward flow into the top of the boundary layer. Using equations (5.47) and (5.49) this
vertical flow can be written in terms of the surface stress component:

wD = − 1
ρ0 f0

(
∂τ

(x)
0

∂y
− ∂τ

(y)
0

∂x

)
. (5.50)

The velocity wD is called the Ekman pumping or suction velocity and equation (5.50)
shows that it is proportional to the ‘curl’ of the surface stress.

5.6.2 The laminar Ekman layer

The theory so far has given information only on the vertically integrated properties of the
boundary layer. To look at the vertical structure it is necessary to make an assumption about
the relationship between the frictional stress τ and the velocity. A simple relationship of
this kind is to assume that the stress components are proportional to the vertical gradients
of the horizontal velocity:

τ (x) = ρ0ν
∂u
∂z

, τ (y) = ρ0ν
∂v

∂z
. (5.51)

This is clearly analogous to the molecular viscous stress law (4.13). The quantity ν is
the kinematic eddy viscosity and corresponds to the viscosity coefficient η, defined in
equation (4.13), divided by the density. As noted above, we must use the eddy-viscosity
concept with caution.

Using equations (5.51) we now find the vertical structure of the flow within the boundary
layer, again assuming that the flow is steady. In principle the viscosity ν could vary with z,
but we take it to be constant for simplicity. We take f0 > 0, corresponding to the Northern
Hemisphere.

Under these conditions the pressure-driven flow (up, vp) is again geostrophic; since the
boundary layer is shallow, we take (up, vp) to be independent of z within the boundary
layer and equal to the large-scale flow (also assumed geostrophic) just above the boundary
layer. For simplicity, we take this large-scale flow to be purely zonal, but varying with the
northward distance y; thus

up = U(y), vp = 0, (5.52)

say. (The calculation can be re-worked with vp �= 0; see Problem 5.8.) The boundary
conditions on the total flow are

(u, v) → (0, 0) as z → 0,

since, with friction, there can be no flow at the ground, and

(u, v) → (U , 0) for z � D,

assuming that the flow tends to the geostrophic, pressure-driven, value far above the
boundary layer. In terms of the stress-driven flow, these become

(uτ , vτ ) → (−U , 0) as z → 0, (5.53)
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(uτ , vτ ) → (0, 0) for z � D, (5.54)

using equations (5.43). From equations (5.45), assuming steady flow and using the stress
law (5.51), the stress-driven flow satisfies the coupled differential equations

− f0vτ = ν
d2uτ

dz2 , f0uτ = ν
d2vτ

dz2 . (5.55)

These can be reduced to a single fourth-order differential equation for uτ or vτ , but are
more easily solved by introducing the complex quantity

λτ ≡ uτ + ivτ ,

which, from equations (5.55), satisfies the second-order equation

d2λτ

dz2 = if0
ν

λτ .

The two solutions of this are

λτ ∝ exp
{

±
[

if0
ν

]1/2
z
}

= exp
{

±
[
(1 + i)

(
f0
2ν

)1/2]
z
}

. (5.56)

To satisfy the boundary condition (5.54) we must choose the minus sign in equation (5.56),
to ensure exponential decay with z. Then, taking the real and imaginary parts of λτ , applying
the boundary condition (5.53) and adding the pressure-driven flow (5.52), we get the full
solution

u = U(y)[1 − e−z/h cos(z/h)], (5.57a)

v = U(y)e−z/h sin(z/h), (5.57b)

where

h ≡
(

2ν

f0

)1/2
.

This is Ekman’s solution and the corresponding boundary layer is called the Ekman layer.
We can calculate the corresponding Ekman pumping velocity (5.50) using the stress

law (5.51) and equations (5.57):

wD =
(

ν

2f0

)1/2 (
−dU

dy

)
= 1

2
hξ , (5.58)

where ξ = −dU/dy is the relative vorticity of the free-atmosphere flow. This relation-
ship between wD and ξ also holds when the free-atmosphere flow is not purely zonal.
Equation (5.58) shows, for example, that the Ekman pumping velocity is upwards under
a cyclone in the free atmosphere (for which ξ > 0) and downwards under an anticyclone
(for which ξ < 0).

Figure 5.9 gives a graphical representation (a hodograph) of the horizontal velocity
vector (u, v) as a function of z/h. This diagram is called the Ekman spiral; note how the
velocity vector spirals in towards the free-atmosphere flow (U , 0). It is conventional to
define the ‘depth’ of the Ekman layer to be the height at which the horizontal flow first
becomes parallel to the free-atmosphere flow; this corresponds to z = πh = π(2ν/f0)1/2.
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Fig. 5.9 The Ekman spiral: a hodograph of horizontal wind components (normalised by U) in the Ekman
layer. The horizontal axis gives the direction of the geostrophic wind above the boundary layer, so
the pressure decreases along the vertical axis. The diagonal arrow indicates the wind vector at a
height z = hπ/2.

Putting this equal to 1 km, the approximate depth of the atmospheric boundary layer, allows
us to get an order-of-magnitude estimate of the value of the eddy viscosity as ν ∼ 5 m2 s−1.
(This should be contrasted with the kinematic molecular viscosity of air at STP, which is a
factor of about 10−5 smaller.)

The Ekman spiral also shows that the deflection of the wind in the boundary layer is
mostly to the low-pressure side of the geostrophic, large-scale flow. Recall from Section 4.8
that the geostrophic flow blows along the isobars; the Ekman-layer analysis indicates how
this is altered in the presence of friction. However, it should be noted that the assump-
tions that have been made in this calculation are seldom fully satisfied in the atmosphere,
owing to the presence of temporal variations and, probably, to the inappropriateness of the
eddy-viscosity concept. As a result, a pure Ekman spiral is hardly ever observed in the real
atmospheric boundary layer.

5.7 Instability

In Section 2.5 we noted that a compressible atmosphere is statically stable if the squared
buoyancy frequency N2 is positive and statically unstable if it is negative. A similar
criterion, but involving N2

B rather than N2, applies to an incompressible atmosphere under
the Boussinesq approximation. Static instability is probably the simplest type of fluid
instability to appreciate: at the most basic level it occurs if a layer of dense, incompressible
fluid of density ρ2 is introduced over a layer of lighter incompressible fluid of density
ρ1 < ρ2 in a closed container (Figure 5.10). In this case the dense fluid will fall through the
lighter fluid, perhaps in a complicated way, leading eventually to a statically stable state in
which the dense fluid is entirely below the light fluid.

A more complex example would be a statically unstable region of finite depth in
a compressible atmosphere. Here parcels displaced adiabatically upwards are ‘lighter’
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Fig. 5.10 A schematic illustration of static instability in an incompressible fluid. In the left-hand panel,
dense fluid (shaded) is introduced over light fluid (unshaded). Static instability leads to a
redistribution of the fluids; in the final stable state, shown in the right-hand panel, the dense fluid
is entirely below the light fluid.

Fig. 5.11 A schematic illustration of convection patterns in a fluid heated from below and cooled from
above.

(i.e. have a higher potential temperature θ ) than their surroundings and continue to rise,
whereas parcels displaced downwards are ‘heavier’ (i.e. have a lower θ ) than their surround-
ings and continue to fall. Eventually a statically stable state is reached, in which low values
of θ are at the bottom and higher values are at the top, so that N2 = (g/θ)(dθ/dz) > 0.

A third case is one in which local regions of static instability are set up by heating from
below, leading to convective instability: see Figure 5.11 for a laboratory analogue. In the
presence of heating of this kind in the atmosphere we may expect much of the forced region
to approach neutral stability, with N2 approaching zero and the lapse rate approaching the
dry adiabatic value �a (see Section 2.5) or the saturated adiabatic value �s (see Section 2.8)
according to whether the air is unsaturated or saturated.

On large scales, the rotation of the Earth allows more subtle types of instability, which
can lead to important atmospheric disturbances such as cyclones and anticyclones and
other weather phenomena. We briefly discuss the two most important of these: baroclinic
instability and barotropic instability.
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5.7.1 Baroclinic instability

Consider a steady zonal flow (U(z), 0, 0) in the Northern Hemisphere that increases with
height and work with the Boussinesq equations on an f -plane. From geostrophic bal-
ance (5.18) and hydrostatic balance (5.20) we can derive a thermal windshear equation (cf.
equation (4.28b))

f0
dU
dz

= g
ρ0

∂ρ

∂y
,

where ρ = ρ̄(z) + ρ′. Since dU/dz > 0 and f0 > 0 this implies that ∂ρ/∂y > 0, i.e. the
density increases with northward distance. Now the slope α of the density surfaces in the
y, z plane satisfies

tan α ≡
(

∂z
∂y

)
ρ

= −∂ρ/∂y
∂ρ/∂z

by the reciprocity theorem of partial differentiation, equation (4.30). Assuming that the
flow is statically stable, so that ∂ρ/∂z < 0, it follows that tan α > 0. Thus a zonal wind
that increases with height is associated, through thermal windshear balance, with density
surfaces that slope polewards and upwards.

We now show that this configuration of density surfaces may be able to release potential
energy. Suppose that air parcels, each of volume V , are somehow interchanged between
two density surfaces ρ = ρ1 and ρ = ρ2, where ρ2 > ρ1, as shown in Figure 5.12. That
is, parcel A, of mass m1 = ρ1V and at initial height z1, is swapped with parcel B, of mass
m2 = ρ2V and initial height z2, without any other part of the fluid being disturbed. The
initial potential energy of the two parcels alone is g(m1z1 +m2z2) while their final potential
energy is g(m2z1 + m1z2). There is therefore an increase of potential energy of the two
parcels (and hence of the whole fluid, since no other changes take place) given by

�EP = g(m2z1 + m1z2) − g(m1z1 + m2z2)

= −g(m2 − m1)(z2 − z1) = −gV(ρ2 − ρ1)(z2 − z1).

Fig. 5.12 Hypothetical interchange of two parcels from surfaces of different densities.
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However, ρ2 > ρ1, so, if z2 > z1, as in Figure 5.12 (that is, the heavier parcel is initially
higher than the lighter parcel), then �EP < 0; there is thus a decrease of potential energy as
a result of the interchange. This can occur, despite the stable density stratification, because
the density surfaces are sloping more steeply than the line joining the two parcels. There is
then a possibility that the potential energy released by the interchange may be converted to
kinetic energy, leading to unstable motions. These motions are an example of baroclinic
instability, also known as sloping convection.6 Of course this kind of interchange of
parcels is highly idealised, so further analysis is needed to determine whether it is ever
dynamically possible.

A simple model, which is more realistic and also dynamically consistent, is Eady’s model
of baroclinic instability, in which the background flow is taken to be a linear function of
height, U = Λz, between rigid horizontal boundaries at z = D and z = −D on an f -plane,
with NB constant. The corresponding background streamfunction is Ψ = −Λyz and the
background density is a linear function of y.

Linearised quasi-geostrophic disturbances to this flow are considered, and for simplicity
we shall assume that these disturbances are independent of y: they therefore satisfy a
linearised QGPV equation of the form

(
∂

∂t
+ U

∂

∂x

)(
∂2ψ ′

∂x2 + f 2
0

N2
B

∂2ψ ′

∂z2

)
= 0, (5.59)

(cf. equations (5.25) and (5.35)). The boundary conditions are that the vertical velocity
wa = 0 at z = −D and D; from equation (5.24) this implies that Dg(∂ψ/∂z) = 0 at the
boundaries. On linearisation about the background flow this gives

(
∂

∂t
+ U

∂

∂x

)
∂ψ ′

∂z
− Λ

∂ψ ′

∂x
= 0 at z = ±D. (5.60)

Normal mode solutions of equations (5.59) and (5.60) of the form

ψ ′ = Re ψ̂(z) exp[ik(x − ct)] (5.61)

are now sought, where k > 0 and the phase speed c may be complex: c = cr + ici. It is
found that ci > 0 for a certain range of wavenumbers, corresponding to a normal mode that
grows in time like exp(kcit): this exponential growth is a signal of instability. The quantity
kci is called the growth rate; it is the inverse of the e-folding time for the instability. A
brief sketch of the details is as follows.

Substitution of (5.61) into (5.59) gives

ik(U − c)

(
−k2ψ̂ + f 2

0
N2

B
ψ̂ ′′

)
= 0

6 The word baroclinic in this context refers to the height variation of the zonal wind or the corresponding
latitudinal variation of the density or temperature.
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and hence, if U(z) �= c,

ψ̂ ′′ − K2ψ̂ = 0, where K = NBk
f0

;

note that this corresponds to a perturbation QGPV that is zero everywhere. The solutions
can be written

ψ̂ = A cosh(Kz) + B sinh(Kz), (5.62)

where A and B are complex constants. Substitution of (5.61) into the boundary
conditions (5.60) gives (

z − c
Λ

)
ψ̂ ′ − ψ̂ = 0 at z = ±D.

When expression (5.62) is substituted into each of these boundary conditions, the resulting
equations added and subtracted and then A and B eliminated, we obtain the dispersion
relation

c2 = −Λ2

K2 [coth(KD) − KD][KD − tanh(KD)]. (5.63)

It can be shown that the right-hand side of equation (5.63) is negative for 0 < KD � 1.2 and
positive otherwise. Therefore we get growing modes (ci > 0) for non-zero wavenumbers
k less than about 1.2f0/(NBD), i.e. horizontal wavelengths greater than about 5.2NBD/f0;
these unstable modes have cr = 0 and do not propagate. The maximum growth rate
kci is about 0.31Λf0/NB and occurs where k ≈ 0.8f0/(NBD): see Figure 5.13. For k �
1.2f0/(NBD), c is real and no growth occurs; the resulting stable modes propagate with
equal and opposite real phase speeds cr.

Fig. 5.13 Normalised growth rate Kci/Λ as a function of KD for unstable normal modes in Eady’s model of
baroclinic instability. Note that the ordinate is proportional to the growth rate kci and the abscissa
is proportional to the horizontal wavenumber k.
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Although the Eady model is highly simplified, it can be generalised in various ways. The
unstable modes that result bear some resemblance to developing cyclones and anticyclones
in the midlatitude troposphere and also to certain unstable waves observed in laboratory
analogues of the atmosphere (see Section 9.4).

5.7.2 Barotropic instability

A different type of instability can occur for basic winds U(y) that vary with the northward
distance y but not with height z; this kind of flow structure is called barotropic. Taking the
disturbance streamfunction ψ ′ to be independent of z and retaining the β-effect, we get(

∂

∂t
+ U

∂

∂x

)(
∂2ψ ′

∂x2 + ∂2ψ ′

∂y2

)
+ (

β − U ′′) ∂ψ ′

∂x
= 0,

from linearising the QGPV equation (5.25). We seek normal mode solutions of the form

ψ = Re φ̂(y) exp[ik(x − ct)], (5.64)

where again k > 0 and c may be complex, and obtain the second-order ordinary differential
equation (

U − c
)(

φ̂′′ − k2φ̂
)

+ (
β − U ′′)φ̂ = 0. (5.65)

This must be solved subject to suitable boundary conditions; convenient (though not
physically very realistic) ones are that the northward velocity should vanish on east–west
oriented boundaries at y = 0, L, say. Hence

φ̂ = 0 at y = 0, L. (5.66)

Equations (5.65) and (5.66) form a system with complex eigenvalues c(n) = c(n)
r + ic(n)

i ,
n = 1, 2, 3, . . . and corresponding complex eigenfunctions φ̂(n)(y). Unlike the Eady-
problem case, these equations cannot generally be solved analytically; however, they are
straightforward to solve by numerical methods.

The physical interpretation of these solutions is as follows. Suppose that the zonal flow
U(y) is initially undisturbed, for t < 0. At time t = 0 it is given a small perturbation
ψ0; this perturbation can be Fourier-analysed into components of differing wavenumber k;
moreover each of these components can in turn be resolved into a linear combination of
the eigenfunctions for that value of k. Each term (or mode) in this sum then evolves in time
according to equation (5.64), with its own complex phase speed. Modes for which ci ≤ 0
are stable: their amplitudes do not grow with time. However, any modes for which ci > 0
will grow exponentially in time like exp(kcit); these are called unstable modes and the
mode with the largest ci will eventually outgrow the others and dominate the disturbance.
Thus if unstable modes exist, most initial disturbances will generally excite them and the
flow will rapidly be distorted. (Of course, the exponential growth in this case means that
the assumption of a small disturbance amplitude will eventually break down for sufficiently
large t, whereupon the model ceases to be valid.)
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This barotropic instability mechanism is believed to be responsible for a number of
types of large-scale weather disturbance observed in the tropical troposphere, as well
as eddies in the stratosphere. On the other hand, if there are no unstable modes, initial
disturbances will not grow and the flow is not affected very much by the perturbation
imposed at t = 0.

A useful general result is the Rayleigh–Kuo criterion, which states that if β − U ′′ does
not change sign in the region 0 ≤ y ≤ L then all modes are stable. It does not guarantee
that unstable modes will always occur if β − U ′′ vanishes somewhere; however, the latter
condition must hold if there is to be any chance of finding unstable modes.

Further reading

The physical interpretation of vorticity given here follows the approach of Acheson (1990).
Vector-calculus identities like equation (5.3) are given in many mathematics texts, such
as those by Riley et al. (2006) and Boas (1983). The advanced texts on geophysical fluid
dynamics by Vallis (2006), Pedlosky (1987) and Gill (1982) cover most of the topics in this
chapter in much more detail than attempted here, and should be consulted by readers who
wish to pursue the subject further. The original derivation of equation (5.40) was given in
the pioneering paper by Charney and Drazin (1961).

Problems

Problem 5.1 Show that the two-dimensional circular flow u = V (r)iϕ introduced in
Section 5.1 can be written in plane Cartesian coordinates (x, y, z) as

u = V
(x2 + y2)1/2 (−y, x, 0);

hence or otherwise verify that the z component of the vorticity is

ξ = dV
dr

+ V
r

,

and that the other components are zero.

Problem 5.2 Pure inertial oscillations (see also Problem 4.3) can be modelled by neglect-
ing horizontal pressure gradients in the linearised Boussinesq equations (5.16a) and (5.16b)
on an f -plane:

ut − f0v = 0, vt + f0u = 0.

Define ũ = u + iv and solve for (u, v), given that (u, v) = (u0, 0) at t = 0. Given that
particle displacements (X , Y) satisfy

∂X
∂t

= u,
∂Y
∂t

= v,
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show that the particle trajectories for these oscillations are circular. Calculate the radius of
the circle if the particle speed is (a) 1 m s−1 and (b) 10 m s−1.

Problem 5.3 Calculate the horizontal and vertical air-parcel displacements X and Z
associated with an internal gravity wave, defined by Xt = u and Zt = W (cf. Problem 5.2),
given that these displacements vanish when x = z = t = 0. Show that the air parcels
oscillate in straight lines perpendicular to the vector (k, 0, m).

Find the period (in minutes) of an internal gravity wave of horizontal wavelength 100 km
and vertical wavelength 5 km in the Earth’s mesosphere, where N2

B = 3 × 10−4 s−2. How
long (in minutes) does the information associated with this wave take to propagate through
a vertical distance of 20 km? If the maximum horizontal wind fluctuation (peak-to-peak)
due to the wave is 2 m s−1, find the maximum horizontal and vertical distances traversed
by an air parcel.

Problem 5.4 Inertia–gravity waves are the generalisation of the internal gravity waves of
Section 5.4 to the case when f0 �= 0. Look for linear plane-wave solutions of the form (5.27)
and show in particular that

ρ0û = ωkp̂
ω2 − f 2

0
, ρ0v̂ = −ikf0p̂

ω2 − f 2
0

(5.67)

and that the dispersion relation is

ω2 = f 2
0 + N2

Bk2

m2 .

Note that the northward velocity v must be non-zero.
What is the minimum angular frequency of these waves? Show that, for a given frequency

and vertical wavelength, these waves have a larger horizontal wavelength than do the
corresponding internal gravity waves.

Problem 5.5 Using equations (5.67) and the hydrostatic equation, calculate the mean
kinetic energy per unit volume K and the mean available potential energy per unit volume
P, averaged over one wave period. How does the ratio P/K behave when ω → f0 and when
ω � f0? To what kind of wave does the latter limit refer? Show that equipartition between
mean kinetic energy and mean available potential energy does not occur for long waves.

Problem 5.6 Starting with the Rossby-wave dispersion relation (5.36), consider waves in
the absence of a background flow, with l = 0. For fixed m put b = f0m/NB and sketch ω as a
function of k, for k > 0, with particular attention to the limits k → 0 and k � b. Show that
Rossby waves cannot exist if the wave period is shorter than a critical value. Estimate this
critical period at 45◦ N for waves of vertical wavelength 10 km, given N2

B = 5 × 10−4 s−2,
a value representative of the stratosphere.

Problem 5.7 Consider Rossby waves that vary with x and y but are independent of depth
z, in a uniform zonal flow U . Show that stationary waves can exist only if the zonal (x)
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wavelength is greater than a certain value, L say. Calculate L at 60◦ N for (a) U = 50 m s−1

and (b) U = 150 m s−1. Compare this with the length of a latitude circle and comment.

Problem 5.8 Take (u, v) = (up + uτ , vp + vτ ), where up(x, y), vp(x, y) is a geostrophic
flow and uτ (z) and vτ (z) satisfy the steady laminar Ekman-layer equations

−f vτ = ν
∂2uτ

∂z2 , fuτ = ν
∂2vτ

∂z2 ,

(f is a constant, taken to be positive, for the Northern Hemisphere). The boundary conditions
are (u, v) = 0 on z = 0 and (u, v) → (up, vp) as ζ → ∞, where ζ = z/h and h = (2ν/f )1/2.

Put λτ = uτ + ivτ and show that

λτ = −(up + ivp)e−(1+i)ζ . (5.68)

Hence verify that

u = up(1 − e−ζ cos ζ ) − vpe−ζ sin ζ ,

v = vp(1 − e−ζ cos ζ ) + upe−ζ sin ζ .

Choose axes such that vp = 0 and draw the Ekman spiral, showing how the vector (u, v)
varies as ζ increases from 0 to ∞. Note that friction causes a significant cross-isobar flow
in the Ekman layer: in which direction is this flow, in general? Sketch the relative directions
of the pressure-gradient force, the Coriolis force and the viscous force at some point above
the ground but well within the boundary layer, assuming that up > 0.

Using equation (5.68), calculate
∫ ∞

0 uτ dz and
∫ ∞

0 vτ dz. What do these quantities
represent? Show that the vertical velocity at the top of the Ekman layer is given by

wτ =
(

ν

2f

)1/2 (
∂vp

∂x
− ∂up

∂y

)
.

If the boundary layer depth is of order 1 km and f = 10−4 s−1, estimate the order of
magnitude of ν. If the geostrophic wind changes by 20 m s−1 over a horizontal distance of
1000 km, estimate the order of magnitude of wτ . Give the direction and order of magnitude
of the horizontal stress at the ground at a point where the geostrophic wind is 10 m s−1.
(Assume that ρ = 1 kg m−3.)

Problem 5.9 Suppose that friction is represented by linear Rayleigh friction

F(x) = −ru, F(y) = −rv,

rather than by an eddy-viscosity assumption. Use this representation in the linear Boussinesq
momentum equations on an f plane to model the following situation.

During the daytime, convection is active, leading to a strong frictional coupling with the
ground (modelled by taking r to be large, r = 10−5 s−1) and the atmosphere can be assumed
to be in a steady state at this time. At sunset, convection is quenched and r becomes zero.
Assuming that the pressure gradient is purely in the y direction, is independent of height
and does not change with time, show that the subsequent motion consists of geostrophic
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motion, superimposed on which is an inertial oscillation of amplitude rug/(r2 + f 2)1/2,
where ug is the geostrophic velocity.

Calculate the amplitude of the oscillation at 30◦ N when the flow is 20 m s−1 from the
west. Show that after 12 h the meridional flow will be the reverse of its daytime value.
(Assume that night-time conditions last this long.)

Problem 5.10 Consider a region of the atmosphere, in the Northern Hemisphere, that is
in geostrophic and hydrostatic balance. Make the Boussinesq approximation and assume
that the wind is in the zonal direction and increases linearly with height, while the density
ρ decreases linearly with height.

Show that the surfaces of constant density slope upwards towards the pole at an angle α

to the horizontal given by

tan α = f Λ/N2
B,

where Λ is the vertical wind shear and NB is the buoyancy (Brunt–Väisälä) frequency.
Now suppose that two air parcels of equal volume V , densities ρ1 and ρ2 (where ρ2 > ρ1)

and heights z1 and z2 are interchanged, while the rest of the atmosphere remains undisturbed.
Under what condition is potential energy released by this process?

Suppose that δρ = ρ2 − ρ1 and the distance δs between the parcels are small. Show that
the amount of potential energy released is given by

�P = ρ0V (NB δs)2 (sin φ cos φ tan α − sin2 φ),

where φ is the angle between the line joining the parcels and the horizontal. [Hint: note
that δρ = (∂ρ/∂y) δy + (∂ρ/∂z) δz, where δy = δs cos φ, δz = δs sin φ.]

Show that �P reaches a maximum �Pmax when φ = α/2. Given that α is small, so that
α ≈ tan α, show that

�Pmax ≈ ρ0V
(

f Λδs
2NB

)2
.

Estimate the angle to the horizontal at which air parcels would move to maximise the
release of potential energy near 60◦ N, given a vertical windshear of 2 m s−1 km−1 and a
buoyancy period of 8 min.

Problem 5.11 Apply the Eady model of baroclinic instability to a region of the atmosphere
near 50◦ N in which the mean zonal wind varies by 30 m s−1 over a depth of 10 km and
NB � 10−2 s−1. Estimate the time (in days) taken by the fastest-growing Eady mode to
grow in amplitude by a factor of e and estimate the zonal wavelength of this mode. What is
the shortest zonal wavelength for which instability can occur under the given conditions?
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In keeping with the emphasis on atmospheric physics in this book, the purpose of the
present chapter is to illustrate the use of basic physical principles in the study of some
aspects of atmospheric chemistry, rather than to provide a comprehensive treatment of
atmospheric chemistry as a whole. We therefore focus on stratospheric chemistry, which
provides some simple yet important applications of the basic principles and also some
examples of interactions between chemistry and dynamics.

In Section 6.1 we outline some of the basic thermodynamics of chemical reactions, while
in Section 6.2 we introduce some elementary aspects of chemical kinetics, including the
concepts of reaction rates and chemical lifetimes. In Section 6.3 we focus on bimolecular
reactions and show how physical reasoning can give an expression for the reaction rate.
The process of photo-dissociation is introduced in Section 6.4. Once these basic ideas have
been established, we apply them to stratospheric ozone in Section 6.5, first describing
the Chapman theory (which involves oxygen compounds only) and then introducing the
effects of catalytic cycles. The principles of chemical transport by atmospheric flows are
discussed in Section 6.6, with a qualitative description of the main global-scale meridional
transport structures in the middle atmosphere. Finally, in Section 6.7, we bring several of
these ideas together in a general description of the processes implicated in the formation of
the Antarctic ozone hole.

6.1 Thermodynamics of chemical reactions

Consider a chemical reaction in which reactants A and B lead to products C and D:

A + B → C + D. (6.1)

In the laboratory this reaction takes place within a fixed reaction vessel; in the atmosphere
we have to imagine it taking place within a given ‘parcel’ or ‘blob’ of air, with no transfer
of mass into or out of the parcel. If the reaction takes place at constant pressure p, which
is usually true for reactions in the atmosphere, then it follows from the First Law of
Thermodynamics in the form (2.18) and from equation (2.19) that the heat �Q supplied to
the parcel is given, assuming reversibility, by

�Q = �H .
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Here �H is the enthalpy of reaction, that is, the sum of the enthalpies of the products
minus the sum of the enthalpies of the reactants. If �H > 0, so that heat must be supplied
for the reaction to proceed, the reaction is called endothermic, whereas if �H < 0, so that
heat is liberated, the reaction is called exothermic.

The standard molar enthalpy of formation of a compound is the enthalpy of reaction
associated with the formation of one mole of the compound from its constituent elements at
a standard temperature (e.g. 25 ◦C = 298.15 K) and pressure (1 atm). This is often denoted
by �H�

f , the superscript � referring to the standard temperature and pressure. Tables of
�H�

f for a variety of atmospheric gases are available in atmospheric chemistry texts. (The
corrections required to convert the enthalpy of reaction to other atmospheric temperatures
and pressures are fairly small.)

Applying these ideas to reaction (6.1) we obtain, at standard temperature and pressure
(STP), the molar enthalpy of reaction

�H� = �H�
f (C) + �H�

f (D) − �H�
f (A) − �H�

f (B). (6.2)

Given the enthalpies of formation on the right-hand side of this equation, we can deter-
mine whether the reaction is endothermic or exothermic. As an example, consider the
recombination of oxygen (O) atoms to molecular oxygen (O2) near the mesopause,

O + O + M → O2 + M. (6.3)

Here M is an arbitrary air molecule, which is required to satisfy conservation of energy
and momentum in the reaction. Typically M is either of the most abundant atmospheric
molecules, N2 or O2. Reaction (6.3) is found to have a negative enthalpy of reaction
�H ≈ −500 kJ mol−1, and is thus exothermic; it therefore contributes to the diabatic
heating of the atmosphere; see Section 4.10.

Conversely, the photolysis (or photo-dissociation) of O2 to form two O atoms has �H ≈
+500 kJ mol−1 (the same enthalpies of formation apply as those in reaction (6.3)), so this
reaction is endothermic: some source of energy is required to drive it. One possibility, which
actually occurs in the atmosphere, is that this energy is supplied by solar photons. A simple
calculation (see Problem 6.1) shows that the relevant photons must have wavelengths of
less than about 240 nm. The standard notation for such a reaction is

O2 + hν → 2O, (6.4)

hν here referring to the photon energy required for photolysis.
Thermodynamics also allows us to predict the direction in which a reaction will proceed;

for example, whether A + B → C + D or C + D → A + B. Consider a natural (or spon-
taneous) change for a ‘system’ (here taken to be our parcel of reacting gases) immersed in a
‘heat bath’ (the surrounding atmosphere) at fixed temperature and pressure. The Second Law
of Thermodynamics implies that the Gibbs free energy G = U +pV −TS (see Section 2.10)
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of the system (excluding the surroundings) must decrease during this change;1 i.e.,

�G < 0. (6.5)

An equation analogous to equation (6.2) relates the overall molar Gibbs free energy of
reaction at standard temperature and pressure, �G�, to the molar Gibbs free energies of
formation of the gases taking part in a reaction. Tabulations of the latter then allow us to
determine whether �G� is negative (so that the reaction can occur spontaneously at STP),
positive (so that it cannot) or zero (so that there is equilibrium between the gases involved).

Since the enthalpy H = U + pV and T = T0 is constant, we have the following relation
between the molar Gibbs free energy of reaction �G, the molar enthalpy of reaction �H
and the change in molar entropy of the system �S:

�G = �H − T0 �S.

6.2 Chemical kinetics

We now consider how rapidly chemical reactions occur, starting with the simplest first-
order or unimolecular reaction, in which one molecule of a single reactant A breaks down
to one molecule of product B and one molecule of product C:

A → B + C.

Representing the number density of A as [A] molecules per unit volume, we define the
reaction rate RA as the rate of decrease of [A] or equivalently the rate of increase of [B]
or [C]:

RA = −∂[A]
∂t

= ∂[B]
∂t

= ∂[C]
∂t

≡ kA[A]. (6.6)

The term on the far right-hand side of this equation defines the rate coefficient kA, which
has units of s−1; its inverse, the chemical lifetime τA of A, satisfies

τA = 1
kA

= [A]∣∣∣∣∂[A]
∂t

∣∣∣∣
.

In practice the rate coefficient is independent of [A] and t, so we can integrate equation (6.6)
to get

[A] = [A]0e−kAt = [A]0e−t/τA ,

where the subscript 0 indicates the value at time t = 0. This shows that the number density
of A decays exponentially in time, decreasing by a factor e in one chemical lifetime.

1 The proof starts with the statement that the entropy of the system plus the surroundings cannot decrease during
the change. Consideration of the heat and work interactions between the system and its surroundings and use
of the First Law and the facts that T = T0 and p = p0 are constant during the change then lead to (6.5). Details
are given in standard books on thermodynamics, e.g. Blundell and Blundell (2009).
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Next we consider second-order or bimolecular reactions, of the type considered in
equation (6.1):

A + B → C + D.

In this case the reaction rate RA and the rate coefficient kAB satisfy

RA = −∂[A]
∂t

= −∂[B]
∂t

= ∂[C]
∂t

= ∂[D]
∂t

≡ kAB[A][B]. (6.7)

We can define an instantaneous lifetime for A for this reaction by

τA = [A]∣∣∣∣∂[A]
∂t

∣∣∣∣
= 1

kAB[B] .

In this case we only get a solution of the form

[A] = [A]0e−t/τA (6.8)

if [B] � [A] so that [B] can be considered to be approximately constant in time; see
Problem 6.3. Third-order (termolecular) and higher-order reactions can also be considered;
some examples are discussed later.

We now consider several simultaneous reactions. First suppose that A has three loss
processes, but no production, described by

A → products (k1), (6.9a)

A + B → products (k2), (6.9b)

A + C + D → products (k3), (6.9c)

where the ki are the rate coefficients. The reaction rate RA includes contributions from each
of these processes. It is given by

RA = −∂[A]
∂t

= k1[A] + k2[A][B] + k3[A][C][D].
The corresponding lifetime for A is

τA = [A]∣∣∣∣∂[A]
∂t

∣∣∣∣
= 1

k1 + k2[B] + k3[C][D]

and [A] decays exponentially with time if [B], [C] and [D] are approximately constant.
(The lifetime may still give an instantaneous measure of the fractional rate of change of
[A] even if [B], [C] and [D] are varying.)

Now suppose that, in addition to the loss processes described by reactions (6.9), there is
also production of A, given by

E + F → A + G (k4);

in this case the reaction rate is

RA = −∂[A]
∂t

= k1[A] + k2[A][B] + k3[A][C][D] − k4[E][F].
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This shows that a steady state is possible, in which ∂[A]/∂t = 0, with a balance between
production and loss of A and an equilibrium number density of A given by

[A] = k4[E][F]
k1 + k2[B] + k3[C][D] .

It should be emphasised that the equations considered in this section apply to a fixed
volume of reacting chemicals. They need modification when applied to a moving parcel of
air, whose volume may be changing with time; see Section 6.6.

6.3 Bimolecular reactions

Some physical insight into the nature of chemical reactions can be gained by considering a
special case, that of bimolecular reactions, which we now represent by

A + BC → (ABC) → AB + C. (6.10)

This starts with initial molecules A and BC; BC breaks into fragments B and C and then A,
B and C pass through an intermediate ‘transient reaction complex’ ABC, before forming
the final molecules AB and C. A schematic diagram of the intermediate complex is given
in Figure 6.1: initially the distance rBC between B and C is small and the distance rAB
between A and B is large. During the reaction, the situation is reversed, rAB becoming
small and rBC becoming large. In the special case in which the angle ∠ABC is fixed, the
process can be represented in a two-dimensional contour plot of the potential energy as a
function of rAB and rBC; see Figure 6.2. This shows that, if sufficient energy is available,
ABC can proceed up the ‘potential energy valley’ X, associated with A + BC, over the
‘saddle point’ or ‘col’ at P and down into the ‘valley’ Y associated with AB + C, following
the dashed line in Figure 6.2.

This idea is further illustrated in Figure 6.3, a plot of the potential energy against a
‘reaction coordinate’ r, which indicates how far the reaction has proceeded. This diagram
is a vertical slice, along the dashed line, through the potential energy surface whose
contours are given in Figure 6.2. Reaction (6.10) proceeds from left to right in Figure 6.3:
an activation energy E1 = HABC − HA+BC is required to get from the valley X over the
saddle point at P. In the case shown, a larger amount of energy E2 = HABC − HAB+C is
regained on the further side, in valley Y, so the reaction is exothermic, with an enthalpy of

Fig. 6.1 A schematic sketch of the transient reaction complex (ABC) involved in reaction (6.10).
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Fig. 6.2 A contour plot of potential energy for reaction (6.10), showing the path of the reaction as a
dashed line that proceeds from X, over the saddle point P, to Y.

Fig. 6.3 A plot of the potential energy for reaction (6.10), as a function of the reaction coordinate r.

reaction �H = E1 − E2 < 0. On the other hand, the reverse reaction AB + C → A + BC,
proceeding from right to left in Figure 6.3, is endothermic, with an enthalpy of reaction
�H = E2 − E1 > 0.

A crude collision theory provides a simple model for the temperature dependence of the
bimolecular rate coefficient. The kinetic theory of gases shows that the number of collisions,
per unit volume per unit time, between molecules A and BC is [A][BC]σc, where σ is the
collision cross-section

σ = π(rA + rBC)2 ,
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rA and rBC being the notional radii of the molecules (taken to be hard spheres in this
model). The molecules are taken to have masses mA and mBC, respectively, and c is the
mean relative speed of the molecules at temperature T :

c =
(

8kBT
πmr

)1/2
,

where kB is Boltzmann’s constant and mr is the reduced mass mAmBC/(mA + mBC) of
the molecules. However, not all collisions lead to reaction: the colliding molecules must
possess sufficient kinetic energy to overcome the energy barrier E1; the probability of this
occurring is given by the Boltzmann factor exp[−E1/(kBT)]. The mean rate of loss of
molecules A per unit volume is therefore

−∂[A]
∂t

= [A][BC]π(rA + rBC)2
(

8kBT
πmr

)1/2
e−E1/(kBT) ≡ k2[A][BC],

say. Apart from the weak T1/2 dependence, the expression for the rate coefficient k2 is
similar to the empirical Arrhenius expression

k2 = αe−Ea/(kBT),

where α is a constant and Ea is an activation energy, provided that Ea is associated with the
barrier energy E1.

6.4 Photo-dissociation

In equation (6.4) we gave an example of photo-dissociation, in which the energy for a
chemical reaction is provided by an incident solar photon that is absorbed by the reactant
molecule (see Section 3.1). In general we can write such a reaction as

A + hν → products,

where the number density [A] satisfies

∂[A]
∂t

= −jA[A],
jA being the photo-dissociation rate. This implies that, in the absence of other processes,
[A] would decrease exponentially like exp(−jAt).

The photo-dissociation rate jA depends upon the incident flux of solar photons, the
frequency ν of the photons and the properties of the molecule A, as follows. Between
frequencies ν and ν + dν there is a contribution

djAν = ΦAνσAν

(
F↓

ν

hν

)
dν,

where ΦAν is the quantum yield (i.e. the number of reactant molecules decomposed
for each absorbed photon) and σAν is the absorption cross-section for the molecule A
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(see Section 3.5.3). The quantity F↓
ν /(hν) is the incident flux of solar photons, i.e. the

number of photons in the given frequency interval crossing unit horizontal area per unit
time; it is equal to the spectral irradiance divided by the energy per photon; see Section 3.6.
We here assume that the Sun is overhead and that there is no scattering, so that all incident
solar photons come from above. For cases of interest to us, the quantum yield is typically
quite close to a step function, being zero for frequencies less than a limit ν0 that corresponds
to the minimum energy required to dissociate the molecule and approximately unity for
higher frequencies. As shown, for example, in Figure 3.15, the absorption cross-section
can vary rapidly with frequency. The spectral irradiance F↓

ν depends on the absorbing gases
present in the path of the solar beam; see Section 3.6. The total photo-dissociation rate is
found by integration over frequency:

jA =
∫ ∞

ν0

ΦAνσAνF↓
ν

hν
dν.

There is a close relation between the processes of photo-dissociation and thermalisation;
see Section 3.1. For a given frequency interval dν, the quantum yield ΦAν equals the rate
of consumption of photo-dissociation energy per unit volume, djAν [A]hν, divided by the
heating rate per unit volume, ρQAν dν, say, due to absorption of photons by molecules A.
This implies that photo-dissociation rates, like heating rates, may form Chapman layers in
the vertical; see Section 3.6.

6.5 Stratospheric ozone

6.5.1 Chapman chemistry

The first attempt to explain the presence of the ‘ozone layer’ – that is, the region of
maximum ozone number density in the lower stratosphere (see Section 1.4.1) – was made
by Chapman (1930). He used a set of oxygen-only reactions, starting with the photolysis
of molecular oxygen by ultra-violet photons of wavelength less than about 240 nm:

O2 + hν → 2O (j2); (6.11a)

cf. reaction (6.4). Next, two fast reactions interconvert O and O3: the termolecular reaction

O + O2 + M → O3 + M (k2), (6.11b)

where M is an arbitrary air molecule (cf. reaction (6.3)), and the photolysis of ozone by
photons of wavelength less than 1180 nm,

O3 + hν → O + O2 (j3). (6.11c)

These two reactions determine the partitioning between O and O3 within odd oxygen,
defined as Ox = O + O3. Finally, ozone is destroyed by the slow reaction

O + O3 → 2O2 (k3). (6.11d)
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Note that the net effect of reactions (6.11a) and (6.11b) is to produce ozone from molecular
oxygen,

3O2 → 2O3,

whereas the net effect of reactions (6.11c) and (6.11d) is to destroy ozone in the reverse
manner,

2O3 → 3O2.

The methods introduced in Sections 6.2 and 6.4 may be applied to reactions (6.11) to
determine the equilibrium ozone distribution. On collecting the production and loss terms
for ozone, we get

∂[O3]
∂t

= k2[O][O2][M] − j3[O3] − k3[O][O3], (6.12a)

whereas for atomic oxygen we get

∂[O]
∂t

= 2j2[O2] + j3[O3] − k2[O][O2][M] − k3[O][O3]. (6.12b)

A similar equation can be written down for ∂[O2]/∂t, but it is simpler to note that, since
the total number of oxygen atoms is conserved by these reactions,

[O] + 2[O2] + 3[O3] = constant. (6.12c)

Note also that equations (6.12a) and (6.12b) can be added to give an equation for the rate
of change of odd oxygen, Ox:

∂[Ox]
∂t

= ∂[O]
∂t

+ ∂[O3]
∂t

= 2j2[O2] − 2k3[O][O3]. (6.13)

In the steady state we set the time derivatives in equations (6.12a), (6.12b) and (6.13) to
zero. These equations are not independent, but from two of them, say (6.12a) and (6.13),
we can get

k2[O][O2][M] = j3[O3] + k3[O][O3], (6.14a)

j2[O2] = k3[O][O3]. (6.14b)

In the stratosphere it turns out that j3 � k3[O], so equation (6.14a) gives the equilibrium
ratio of the odd-oxygen species in terms of the rate coefficients j3 and k2 and the number
densities of O2 and air (molecule M):

[O]
[O3] = j3

k2[O2][M] . (6.15)

This ratio is determined by the fast reactions (6.11b) and (6.11c); it is found to be very
small in the lower and middle stratosphere, so atomic oxygen is much less abundant than
is ozone there. (The opposite is true in the upper mesosphere.)
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Substitution of equation (6.15) into equation (6.14b) then gives the equilibrium number
density of ozone in terms of the number densities of molecular oxygen and air and the rate
coefficients:

[O3] = [O2]
(

j2k2[M]
j3k3

)1/2
. (6.16)

A calculation of the vertical profile of the equilibrium ozone number density predicted
by the Chapman theory can therefore be performed if the vertical profiles of the terms on
the right-hand side of equation (6.16) are known. It is, however, found that the Chapman
theory predicts an ozone maximum that is too large compared with observations (see
Problem 6.5). Deficiencies in the Chapman theory include the neglect of further ozone-
destroying reactions, particularly catalytic cycles, and the neglect of transport of ozone and
other chemicals by atmospheric motions. These are discussed in Sections 6.5.2 and 6.6,
respectively.

It is also important to consider the time scales on which equilibrium in the various
Chapman reactions is attained. The full details are quite complicated, but we note here
that, at 30 km altitude, in the mid-stratosphere, the time scale for equilibration of the odd
oxygen ratio (6.15) is a few minutes, whereas the time scale for destruction of odd oxygen
is several weeks. There is thus rapid adjustment between O and O3, but only very slow
changes in O + O3.

6.5.2 Catalytic cycles

As noted in the previous section, the Chapman theory predicts too much ozone in the lower
stratosphere. A major reason for this is that it neglects the effects of ozone-destroying
catalytic cycles. These are now considered briefly.

A common catalytic cycle involves the following pair of reactions:

X + O3 → XO + O2 (k4), (6.17a)

XO + O → X + O2 (k5). (6.17b)

The net effect of these two reactions is

O + O3 → 2O2, (6.18)

which destroys ozone just like the Chapman reaction (6.11d). The molecule X is a catalyst;
that is, it takes part in the reactions (6.17) but is not itself consumed. Instead it is ‘recycled’,
so a single X molecule can destroy many ozone molecules and even tiny amounts of the
catalyst may have important effects. Now it was noted in Section 6.5.1 that reaction (6.11d)
is slow; if, however, the net effect (6.18) of the catalytic cycle is faster, this will dominate
the destruction of ozone, and significantly lower the equilibrium amount (see Problem 6.6).
Examples of catalysts X that actually do this in the stratosphere are the hydroxyl radical
(OH), nitric oxide (NO) and chlorine (Cl).
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Inclusion of catalytic cycles brings theoretical calculations of the ozone distribution into
closer agreement with observations. However, the cycles interact with one another, so
their effects cannot be added linearly. Further complications include the facts that some of
the catalysts may become involved in additional ‘null cycles’, making them unavailable
to reactions (6.17). Moreover, some potential catalysts may be temporarily tied up in
unreactive ‘reservoir species’, such as dinitrogen pentoxide (N2O5), hydrochloric acid
(HCl) and chlorine nitrate (ClONO2). Comprehensive models of stratospheric chemistry
must take all of these effects into account and hence may include tens of reactants and
hundreds of reactions.

6.6 The transport of chemicals

It was noted above that a full theory of stratospheric ozone needs to take account of the
transport of chemicals by air motion; in particular, we must apply the equations governing
chemical reactions to moving parcels of air. An important concept here is the material, or
advective, derivative D/Dt, introduced in Section 4.2, which represents the rate of change
with time following a moving parcel.

Consider an air parcel of unit mass, including a chemical constituent A whose mass
mixing ratio is μA. Then by definition of the mass mixing ratio (see Section 2.2), μA is also
the mass of A in the parcel. If A is neither being produced nor being lost through chemical
reactions, the mass of A is constant following the parcel, so

D(μA)

Dt
= 0. (6.19)

A chemical whose mixing ratio satisfies equation (6.19) is an example of a conservative
tracer.2

It is straightforward to show that the mass mixing ratio of A is related to the number
density [A] by

ρμA = mA[A], (6.20)

where ρ is the density of air, including the constituent A (see Section 2.2), and mA is the
molecular mass of A. Equation (6.19) can therefore be written

D
Dt

(
mA[A]

ρ

)
= 0

and so, since mA is constant,

1
ρ

D[A]
Dt

− [A]
ρ2

Dρ

Dt
= 0.

2 Other examples of conservative tracers are the potential temperature θ (when the diabatic heating Q = 0; see
Section 4.10) and the potential vorticity P (when both the diabatic heating and friction are zero; see Section 5.1).
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However, from the mass-continuity equation (4.8), Dρ/Dt = −ρ∇ · u, where u is the
fluid velocity. After some rearrangement and expansion of the material derivative D/Dt =
∂/∂t + u · ∇, we get

∂[A]
∂t

+ u · ∇[A] + [A]∇ · u = 0,

or, collecting the terms in u,

∂[A]
∂t

+ ∇ · (u[A]) = 0. (6.21)

This shows how the number density of a conservative tracer A changes in response to
compression or expansion of a parcel of air, as it is advected with the local velocity field u.
The analogy with the mass-continuity equation (4.3) should be noted; see Problem 6.8.

Now suppose that A is undergoing chemical reactions so that, in addition to this com-
pression or expansion effect, there is a contribution −RA to the rate of change of the number
density [A]; cf. equation (6.6). Equation (6.21) must then be replaced by

∂[A]
∂t

+ ∇ · (u[A]) = −RA. (6.22)

All time derivatives of number densities in Sections 6.2–6.5 must be replaced by expressions
analogous to that on the left-hand side of equation (6.22), when transport is to be taken into
account. The right-hand side of equation (6.22) is commonly split into ‘production’ and
‘loss’ terms in the form −RA = PA − LA.

It can be shown that, when chemical reactions are taking place, equation (6.19) for the
mixing ratio must be replaced by

D(μA)

Dt
= −mARA

ρ
. (6.23)

In this case A is called a non-conservative tracer.
By analogy with the chemical lifetimes defined in Section 6.2, we can also define a

dynamical lifetime

τdyn = [A]
|∇ · (u[A])| .

This may be difficult to estimate without quite detailed knowledge of the velocity field,
but, in general, if τdyn is much longer than the chemical lifetime τA, then changes in A will
be mainly chemical, whereas if τdyn is much shorter than τA then A will be essentially a
conservative tracer.

In principle, a full treatment of atmospheric chemistry should follow the motion of each
parcel of air and account for the changes of each chemical constituent within the parcel,
using equation (6.22) or equation (6.23). In practice this would be impossibly complicated,
even if the motion itself were known precisely. One feasible approach is to follow the
trajectories of a small but representative set of parcels and track the chemical changes for
each parcel as it moves through regions of differing composition and perhaps into and out
of sunlight. Such a trajectory calculation needs accurate knowledge of the wind fields and
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Fig. 6.4 A schematic plot of the Brewer–Dobson circulation (lower four arrows, in the stratosphere) and the
solstitial mesospheric circulation (upper two arrows). The shaded ellipse indicates the
approximate position of the 200 K isotherm near the equatorial tropopause, i.e. the ‘cold trap’
identified by Brewer (1949).

these must usually be found from models: observations on their own are seldom sufficient
for an accurate determination of winds over extensive regions.

Nevertheless, some patterns of transport are well established, at least in a qualitative
sense. The most important transport structure in the stratosphere is the Brewer–Dobson
circulation: this is a meridional circulation, i.e. a circulation in the north–south and vertical
directions. (The superimposed east–west motion is much more rapid, but is conceptually
less important for global transport of chemicals.) It involves upward motion of air parcels
from the troposphere into the stratosphere at low latitudes, poleward motion in the lower
stratosphere of each hemisphere and a gentle descent back into the troposphere in middle
and high latitudes; see Figure 6.4. The upward motion in low latitudes was inferred by
Brewer (1949) from the fact that the stratosphere is very dry: he reasoned that the inability
of moisture from the troposphere to get into the stratosphere must be due to the fact that
most of the air that moves from the troposphere into the stratosphere passes through a
very cold region (often called the ‘cold trap’ in this context) at the equatorial tropopause
(see Figure 1.5). Here it is ‘freeze-dried’, with water vapour forming ice particles that fall
out under gravity. The poleward motion in the lower stratosphere was inferred by Dobson
(1956) from observations of the ozone distribution: although ozone is mainly formed in the
equatorial stratosphere from reactions (6.11a) and (6.11b), significant number densities are
found at high latitudes, which must be due to transport from low latitudes. (Note that, if a
parcel retains its ozone mixing ratio as it descends – and is compressed – at high latitudes,
then the number density increases. This is also evident from equation (6.20), since the
parcel encounters increasing air density as it descends.) Although the general form of
the Brewer–Dobson circulation was originally obtained from the observed distributions of
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chemicals, elucidation and interpretation of its structure has required detailed theoretical
and numerical modelling studies.

Another large-scale circulation in the middle atmosphere occurs around the solstices, with
upward motion in the summer stratosphere and mesosphere, a summer-to-winter motion in
the mesosphere and a descent over the winter pole; see Figure 6.4 again. This circulation
also has important implications for the transport of chemicals. Both of these circulations
are essentially wave-driven: the Brewer–Dobson circulation by planetary waves and the
solstitial circulation mainly by gravity waves (see also Section 9.5.2).

6.7 The Antarctic ozone hole

A useful general measure of ozone in the atmosphere is the column ozone or total ozone,
defined in terms of the total number N3 of molecules of ozone in a complete vertical column
of atmosphere of unit horizontal cross-section:

N3 =
∫ ∞

0
[O3] dz.

A convenient measure of column ozone is the Dobson Unit (DU), defined as the height of
the column, in hundredths of a millimetre, if all the ozone molecules in it were brought to
a pressure of 1 atm and a temperature of 0 ◦C. Typical values of column ozone are about
300 DU, meaning that the height of the column, compressed in this way, would be only
about 3 mm. Most of the ozone molecules occur in the stratosphere.

As was mentioned in Section 1.4.4 and illustrated in Figure 1.10, the column ozone varies
from place to place over the globe and with time; we focus here on its behaviour in the
Antarctic. Measurements of the seasonal variation of column ozone amounts over Antarctica
have been made since 1956. In particular, members of the British Antarctic Survey have
made such measurements with a Dobson ozone spectrophotometer (see Section 7.3.1) at
Halley station (76◦ S, 27◦ W), except during the midwinter polar night, when the Sun
does not rise for almost 4 months. The typical annual variation in the Antarctic, prior to
the late 1970s, had a minimum of about 250–300 DU in spring and a maximum of about
400 DU in summer. However, in more recent years the picture has changed significantly:
monthly mean October amounts generally decreased throughout the 1980s and have fallen
below 160 DU in each year between 1991 and 2008, except 2002 and 2004; see Figure 6.5.
These routine ground-based measurements were confirmed by satellite observations with
the Total Ozone Mapping Spectrometer (TOMS) and also by several special international
expeditions to the Antarctic, in which very detailed measurements of the spring ozone-
depletion phenomenon were made. These revealed a large-scale ‘ozone hole’, a region
whose horizontal size approaches that of the Antarctic continent, within which a massive
loss of ozone occurs over a period of about 6 weeks during the Southern Hemisphere’s
spring, between August and October. Observations of the vertical structure of the ozone
layer in the Antarctic show that, at many locations, nearly all the ozone may disappear at
this time between about 15 and 20 km altitude; see Figure 6.6. Later in the year, ozone
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Fig. 6.5 Monthly mean values of column ozone in October at Halley station for 1957–2008. Drawn using
data provided by J. D. Shanklin, British Antarctic Survey.

returns to the Antarctic stratosphere, although the region of depleted ozone content may
drift away into lower latitudes before it is ‘filled in’.

After extensive study by many atmospheric chemists and physicists a broad understand-
ing of the Antarctic ozone hole has been attained: a qualitative description is as follows.
In the winter night the polar regions receive no solar radiation, but can readily emit infra-
red radiation to space. At the same time a strong circumpolar (eastward) vortex forms in
the Antarctic stratosphere; this is subject to very little disturbance by planetary waves3

and so there is little wave-induced dynamical heat transport from lower latitudes into the
vortex. The vortex therefore becomes very cold and ‘polar stratospheric clouds’ (PSCs) –
thin clouds of ice or liquid water particles – can form in the Antarctic lower stratosphere.
Similarly, there is little latitudinal transport of chemicals into or out of the vortex, which
therefore acts rather like a ‘chemical containment vessel’. By contrast, the Arctic polar
winter vortex is usually more disturbed by planetary waves and has more heat transport

3 The Northern Hemisphere has two large continental land-masses at midlatitudes: during the winter the eastward
winds blowing over these continents give rise to stationary Rossby waves in the troposphere (see Section 5.5).
These in turn lead to stratospheric Rossby-wave-like disturbances that disrupt the northern winter stratospheric
vortex from time to time. The absence of large midlatitude continental land-masses in the Southern Hemisphere
means that such disruptions seldom occur there.
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Fig. 6.6 The partial pressure of ozone in the lower stratosphere over Halley station on 15 August (solid
line) and 13 October 1987 (dotted), showing the almost total loss of ozone between about 15 and
20 km altitude during this period. Adapted from Gardiner (1989).

from lower latitudes, so the cold winter conditions that allow PSCs to form are less common
in the Arctic stratosphere.

It turns out that purely gas-phase chemistry cannot account for the large ozone losses that
are found in the lower stratosphere during the Antarctic spring: ‘heterogeneous’ reactions,
on the surfaces of the PSC particles, are also necessary. (The vertical region of ozone
depletion shown in Figure 6.6 is located near a PSC.) The process is too complex to be
explained in detail here, but the main features are as follows.

• Catalytic cycles involving chlorine species, including the chlorine monoxide dimer
(ClO)2, and reactive bromine species (e.g. BrO), can effectively remove ozone at the
cold temperatures present in the lower Antarctic stratosphere during the spring. These
cycles are inhibited if ClO becomes trapped in the reservoir species chlorine nitrate
(ClONO2), as noted in Section 6.5.2. However, this effect is diminished in the presence
of PSCs, since nitric acid (HNO3) condenses on the surfaces of the PSC particles,
which in turn may sediment out under gravity, removing the NO2 that is needed to form
ClONO2.

• Moreover, the reservoir species ClONO2 and HCl (hydrochloric acid) can actually release
chlorine compounds (Cl2 and HOCl) on the surface of the PSCs and these compounds
are readily photolysed when the Sun returns in early spring, providing a supply of Cl for
the catalytic cycles.

• A chlorine catalytic cycle of the form (6.17), where X = Cl, is too slow in the lower
stratosphere to account for the observed depletion of ozone.
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Fig. 6.7 A schematic diagram of some of the chemical processes involved in ozone depletion in the
Antarctic. The rectangle represents the source of chlorine, the circles represent reaction
intermediates and the diamonds represent reservoir species. The dashed lines represent reactions
that occur only in the presence of PSCs or at unusually low temperatures. Adapted from Wayne
(2000).

• Some of the stratospheric chlorine is derived from naturally occurring methyl chlo-
ride (CH3Cl), but most comes from photolysis in the stratosphere of the man-made
chlorofluorocarbons (CFCs); for example, the CFC CF2Cl2 is photolysed by ultra-violet
radiation in the reaction

CF2Cl2 + hν → Cl + CF2Cl.

A schematic diagram of these processes is given in Figure 6.7.
The Antarctic ozone hole therefore arises from a blend of chemical, dynamical and

transport processes. Transport carries chlorine compounds from the industrial regions of
the Northern Hemisphere to the Antarctic. The absence of planetary waves makes the
Antarctic winter stratosphere an especially cold and isolated part of the atmosphere, where
PSCs can form. Finally, chemical reactions, including reactions on the PSC particles, lead
to rapid and massive local depletion of ozone in the Antarctic spring.

Ozone depletion is not confined to the Antarctic spring. World-wide data show that there
have been ozone losses at other latitudes since the 1970s: for example a 5% per decade
drop in column ozone has been observed between 40◦ N and 60◦ N in winter. Possible
causes of global-scale depletion include the ‘dilution’ of the rest of the atmosphere, due
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to dispersion of the Antarctic ozone hole when the vortex finally breaks down in spring;
similar but weaker ‘mini ozone holes’ in the Arctic, which have been observed in some
recent winters; and other types of heterogeneous chemistry, taking place on volcanic cloud
particles and involving further chemical species.

The decrease in amount of atmospheric ozone may also have climatic effects, in addition
to the direct biological effects mentioned in Section 1.4.4. Less ozone in the stratosphere
implies less absorption of solar and infra-red radiation there (see Section 3.5.3) but also
less infra-red emission: the net effect is found to give a cooler stratosphere. Moreover,
the decrease in amount of stratospheric ozone during recent decades is believed to have
led to cooling in the troposphere also, partly offsetting the enhancement of the greenhouse
warming there due to the increase in amounts of carbon dioxide and other greenhouse
gases: see Section 8.1.

Further reading

The book by Graedel and Crutzen (1995) provides a non-technical introduction to
atmospheric chemistry and its implications for climate. The basic physical chem-
istry mentioned in this chapter is treated in more detail by Atkins (2006) and
Hobbs (1995), for example, and the thermodynamic and kinetic-theory background
are covered, for example, by Blundell and Blundell (2009). Specialised texts on
atmospheric chemistry, covering most of the topics in this chapter, include those by
Wayne (2000) and Brasseur and Solomon (2005). Lary (1997) presents a review of ozone-
destroying catalytic cycles in the stratosphere. A detailed treatment of stratospheric transport
is given by Andrews et al. (1987). Dessler (2000) provides an introductory survey of the
chemistry and physics of stratospheric ozone while Solomon (1999) gives an authoritative
review of research into stratospheric ozone depletion.

Problems

Problem 6.1 Verify the result, mentioned in Section 6.1, that the photolytic reaction (6.4)
requires photons of wavelength less than about 240 nm, given that the molar enthalpy of
reaction is about +500 kJ mol−1.

Problem 6.2 Can the reaction

NO3 + H2O → HNO3 + OH

occur spontaneously at standard temperature and pressure? Use the following Gibbs free
energies of formation at STP (all in kJ mol−1): HNO3, –74.7; OH, 34.2; NO3, 115.8; and
H2O, –228.4.

Problem 6.3 Consider a bimolecular reaction in the form of equation (6.1). Show from
equation (6.7) that [B] − [B]0 = [A] − [A]0, where the subscripts 0 indicate the values at
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t = 0. Then solve for [A], assuming that the rate coefficient kAB is constant. Hence verify
that equation (6.8) holds if [B]0 � [A]0.

Problem 6.4 If Fs = 1370 W m−2 is the total solar irradiance and Ps is the total solar
photon flux (photons m−2 s−1), both measured at the top of the atmosphere, show that

Ps

Fs
=

∫ ∞
0 N(ν) dν∫ ∞

0 Bν(ν, T) dν
,

where N(ν) dν is the number of photons m−2 s−1 steradian−1 emitted from the Sun’s surface
in the frequency range (ν, ν + dν), and Bν(ν, T) is the Planck function; assume that the
Sun is a black body at T = 6000 K. Hence obtain Ps, given that∫ ∞

0

x2

e x − 1
dx = 2.40.

Calculate also the fraction of the total photon flux that lies in each of the wavelength
ranges (i) λ < 1180 nm, (ii) 240 nm < λ < 280 nm and (iii) λ < 240 nm. (You will need
to write a computer program to calculate the required integrals.)

Problem 6.5 The following reaction rates and photo-dissociation rates are taken from
DeMore et al. (1997):

k2 = 6 × 10−46(T/300)−2.3 m6 s−1,

k3 = 8 × 10−18 exp(−2060/T) m3 s−1,

j2 = 3 × 10−12 s−1, j3 = 5.5 × 10−4 s−1.

The photo-dissociation rates are appropriate for the midlatitude equinox at noon and at
25 km altitude. Use information from Figure 1.3 and Section 2.2 to estimate the number
density of ozone at this altitude, based on Chapman chemistry. Show that this value is
several times larger than the peak value given in Figure 1.4. What physical and chemical
processes might reduce this value in the real atmosphere?

Problem 6.6 Add the catalytic reactions (6.17) to the Chapman scheme and explain how
this modifies the algebra for the Chapman scheme. Assuming that the extra reactions are
much slower than the fast equilibrium between O3 and O2+ O, show that the vertical
distribution of ozone is given by

[O3]
[O2] ≈

(
j2k2[M]

j3k3

)1/2
−

(
k2k4[M][X]

2j3k3

)
;

compare this with equation (6.16) and comment.

Problem 6.7 What happens to O and O3, according to the Chapman scheme, when solar
radiation switches off at sunset? If catalysts are present, what happens to X and XO?
(Assume that k2[O2][M] + k3[O3] ≥ 10−1 s−1 throughout the stratosphere.)
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Problem 6.8 Derive equation (6.21) by a direct method analogous to that used in Chapter 4
to derive the continuity equation (4.3).

Problem 6.9 Check that 1 DU corresponds to an ozone column of about 2.7 × 1020

molecules per square metre.



7 Atmospheric remote sounding

In this chapter we consider a small selection of techniques for observing the atmosphere.
These techniques have been chosen for two main reasons: (a) they illustrate the use of
physical principles, including principles introduced earlier in this book; and (b) they
provide crucial data on atmospheric phenomena modelled elsewhere in this book, such as
Rossby waves, gravity waves and the Antarctic ozone hole. The topics considered are all
examples of remote sounding; we do not attempt to present a balanced account of all
observational methods.

In Section 7.1 we briefly list some of the main atmospheric observational methods. In
Section 7.2 we outline the principles of remote sounding of the atmosphere from space,
focusing on methods that rely on thermal emission from atmospheric gases and on scattering
of solar radiation by atmospheric gases. Then in Section 7.3 we discuss three types of
ground-based remote sounding, namely the Dobson spectrophotometer, radars and lidars.
We omit the details of the instruments’ optical and electronic systems, the technicalities of
signal processing and the sophisticated statistical methods that may be required in order to
extract meaningful physical quantities from the raw measurements.

7.1 Atmospheric observations

Quantitative observations of the atmosphere are made in many different ways. Routine
meteorological measurements of ground-level temperature and wind are made with simple
thermometers and anemometers, respectively, and routine measurements of temperature
and humidity through the depth of the troposphere are made with balloon-borne instruments
(radiosondes) that transmit information back to the surface by radio. At higher altitudes,
instruments on research balloons and aircraft can measure samples of air in the lower
stratosphere, and instruments on rockets can make measurements in the mesosphere and
beyond. These are all examples of in situ measurements. An alternative is to use remote
sounding, that is, to measure atmospheric properties at a distance, rather than in the
vicinity of the measuring apparatus. This can be done from orbiting instruments in space,
from aircraft, from balloons and from ground-based instruments, in each case by measuring
electromagnetic radiation emitted, scattered or transmitted by the atmosphere.

Remote-sounding techniques can be divided into passive and active types. In passive
remote sounding, the radiation measured is of natural origin, for example thermal radiation
emitted by the atmosphere, or solar radiation transmitted or scattered by the atmosphere.
(Most space-borne remote-sounding methods are passive.) In active remote sounding, a



172 Atmospheric remote sounding

transmitter (e.g. a radar) is used to direct pulses of radiation into the atmosphere, where
they are scattered by atmospheric molecules, aerosols or inhomogeneities of atmospheric
structure; some of the scattered radiation is then detected by a receiver.

Each of these techniques has its advantages and disadvantages. In situ measurements
may give accurate, high-resolution measurements, but can sample only small, perhaps
unrepresentative, regions. Remote sounding from satellites can give near-global coverage,
but can provide only averaged values of the measured quantity over large regions, perhaps
hundreds of kilometres in horizontal extent and several kilometres in the vertical direction.
Satellite instruments are expensive to put into orbit and cannot usually be repaired if they
fail. Ground-based radars can provide data with high vertical resolution (by measuring
small differences in the time delays of the return pulses), but only above the radar site. In
general a mix of different observational techniques must be used for providing the data
required for weather forecasting or atmospheric research.

7.2 Atmospheric remote sounding from space

Earth-orbiting satellites provide enormous possibilities for global-scale measurements of
the atmosphere. For example, geostationary satellites, orbiting at 36 000 km over the equa-
tor, monitor weather systems and provide information on tropospheric winds by tracking
the motion of clouds. Polar-orbiting and other non-geostationary satellites, orbiting at alti-
tudes up to about 1000 km, are used for measuring temperature and composition at a range
of levels in the vertical. They complete up to 15 orbits per day, crossing each latitude circle
twice per orbit; their orbits are often chosen such that they remain ‘phase-locked’ with the
Sun (they are then called Sun-synchronous), crossing each latitude at the same two local
times in each orbit.

In the following subsections we shall consider some basic principles of temperature and
composition sounding from space, focusing on measurements of the thermal radiation emit-
ted from the atmosphere and of solar radiation scattered by the atmosphere. Two viewing
geometries are commonly used (see Figure 7.1): nadir viewing, in which the instrument
views vertically downward towards the ground, and limb viewing, in which the instrument
views the atmosphere tangentially, towards the limb. Nadir viewing measures radiation
from a comparatively short path-length of emitting gas, against the warm background of
the Earth’s surface and lower atmosphere, which also emit thermal radiation. Limb view-
ing has the advantage of measuring radiation from a much longer path-length of emitting
gas (see Problem 7.1), against the non-emitting background of cold space. However, the
spacecraft must be aligned very accurately (to within a few arc seconds) for limb viewing,
if the correct portion of atmosphere is to be measured. The technique of solar occultation,
in which measurements of the absorption of solar radiation by the atmosphere are made
as the Sun rises or sets, is also indicated in Figure 7.1, but will not be considered in this
chapter. All of these techniques make use of the ideas of radiative transfer introduced in
Chapter 3.
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Fig. 7.1 Illustrating the geometry of (a) nadir viewing, (b) limb viewing and (c) solar occultation. (Not to
scale.) Note that the limb-viewing and occultation instruments may observe a different latitude
from the current latitude of the satellite platform; for example, the North Pole may be viewed
while the satellite is at 60◦ N.

7.2.1 Thermal emission measurements

Consider a satellite instrument receiving infra-red emission from the atmosphere along a
vertical (nadir) path. From the solution of the radiative-transfer equation in the form of
equation (3.13), assuming local thermodynamic equilibrium so that Jν = Bν , we can show
that the spectral radiance Lν at frequency ν received by the satellite is given by

Lν =
∫ ∞

0
Bν(T(z))

∂Tν(z, ∞)

∂z
dz + Bν(Tg)Tν(0, ∞), (7.1)

where T(z) is the atmospheric temperature at height z, Tν(z, ∞) is the spectral transmittance
between height z and the satellite, and Tg is the surface temperature. It is assumed that the
surface acts as a black body.1

The spectral absorptance between height z and the satellite is Aν(z, ∞) = 1 − Tν(z, ∞):
for simplicity the ‘∞’ argument of Aν will be dropped from now on. The general form of
Aν near an isolated spectral line at ν = ν0 is given by Figure 7.2 (cf. Figure 3.12). The
precise details depend on whether we have a Doppler or Lorentz line shape, on the amount
and distribution of absorbers or scatterers in the path between height z and the satellite, and
on the temperature and pressure distributions along the path.

The form of the ν dependence of the Planck function Bν(T), a much more slowly varying
function of ν than the absorptance, is given in Figure 7.3. Note that Bν increases with T for
all values of ν and T .

The simplest case of remote sounding of temperature occurs when atmospheric extinction
at frequency ν can be neglected. Then Tν = 1 everywhere and the satellite just ‘sees the
surface’ at that frequency, with no atmospheric extinction, so Lν = Bν(Tg). The surface

1 Note the resemblance of equation (7.1) to equation (3.33); however, the latter involves integration over all
slanting upward paths.
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Fig. 7.2 Schematic form of the spectral absorptance Aν(z) between height z and a remote-sounding
satellite, as a function of frequency ν near a Lorentz line centre at ν0, for three values of z. Solid
curve, small z; dashed curve, intermediate z; dotted curve, large z.

Fig. 7.3 Form of the Planck function Bν(T), as a function of frequency ν, for the temperatures T = 220, 240
and 260 K. The peak of the 260 K curve, at about 16 THz, corresponds to a wavenumber of about
530 cm−1 and a wavelength of about 18.7 μm. Note that 1 THz = 1012 Hz.

temperature Tg can then be obtained from the radiance measurement Lν at frequency ν by
inverting the Planck function (3.1):

Tg = hν

kB ln

(
1 + 2hν3

c2Lν

) . (7.2)

More generally, we can define a brightness temperature in terms of the radiance Lν and
frequency ν using equation (7.2), even in the presence of extinction.

Now suppose that the frequency ν is near an isolated spectral line centred at ν0, so
that absorption cannot be neglected, and consider an isothermal atmosphere at a constant
temperature T0, which may be different from the temperature Tg of the ground. Then the
integral in equation (7.1) can be evaluated explicitly, to give
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Lν = Bν(T0)[1 − Tν(0, ∞)] + Bν(Tg)Tν(0, ∞)

= Bν(T0)Aν(0) + Bν(Tg)[1 − Aν(0)]

= Bν(Tg) + [
Bν(T0) − Bν(Tg)

]
Aν(0). (7.3)

Now 1 − Tν(0, ∞) = Aν(0) is the spectral absorptance, and hence also the spectral emit-
tance, of the isothermal atmosphere. The first and second lines of equation (7.3) therefore
state that Lν equals the upward radiance Bν(T0)Aν(0) from the (non-black) atmosphere,
plus a fraction Tν(0, ∞) of the upward radiance Bν(Tg) from the (black) ground that is
transmitted by the atmosphere. The last line of equation (7.3) shows that the radiance
Lν can alternatively be written as Bν(Tg) plus a modification equal to Bν(T0) − Bν(Tg)

times the total atmospheric absorptance Aν(0). Note that any rapidly varying frequency
dependence of Lν must come from the absorptance Aν , rather than from the Planck
function Bν .

Consider two cases.

• If T0 > Tg (the air temperature is greater than the surface temperature), then Bν(T0) >

Bν(Tg) and Lν displays a ‘hump’ around the line centre at ν0, as shown in Figure 7.4.
The line is called an emission line.

• If T0 < Tg (the surface is warmer than the air temperature), then Lν displays a ‘dip’
around the line centre at ν0, as shown in Figure 7.5. The line is called an absorption
line.

In each case the radiance Lν tends to the Planck function at the surface temperature,
Bν(Tg), sufficiently far from the line centre. The depth of the hump or dip at ν0 in these two
cases increases as the absorptance Aν(0) increases and also as the magnitude of the jump
Bν(T0) − Bν(Tg) in the Planck function increases.

Now consider the two-layer atmospheric temperature profile given by

T(z) = T0 for 0 < z < z1, T(z) = T1 for z1 < z.

Fig. 7.4 Schematic satellite-observed radiance (solid line) near a Lorentz-broadened spectral line, for an
isothermal atmosphere that is warmer than the surface temperature. Planck functions at the
temperatures Tg and T0 are given as dashed lines.
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Fig. 7.5 Schematic satellite-observed radiance (solid line) near a Lorentz-broadened spectral line, for an
isothermal atmosphere that is colder than the surface temperature. Planck functions at the
temperatures Tg and T0 are given as dashed lines.

Fig. 7.6 Schematic temperature profile for a two-layer atmosphere.

It is easy to show from equation (7.1) that

Lν = Bν(Tg) + [
Bν(T0) − Bν(Tg)

]
Aν(0) + [Bν(T1) − Bν(T0)]Aν(z1).

Suppose for example that Tg > T1 > T0, as in Figure 7.6, crudely representing a hot
surface, cool ‘troposphere’ and warm ‘stratosphere’. The frequency variation of the result-
ing radiance near ν0 received at the satellite takes the form of Figure 7.7, in the case of
a Lorentz-broadened spectral line. The spectral radiance Lν includes a ‘background’ term
given by the Planck function at the surface temperature, Bν(Tg). This has a large dip super-
imposed: large, because Aν(0) is a broad, high hump, and a dip because Bν(T0) < Bν(Tg).
In the middle of this large dip is a small hump: small because Aν(z1) is generally lower
and narrower than Aν(0) and also because the jump in Bν at z1 is less than at the ground,
and a hump because Bν(T1) > Bν(T0).2 This kind of feature can be seen in the atmospheric
example shown in Figure 7.8; see also Problem 7.3.

A similar approach can be used for a multi-layer atmosphere, approximating a smoothly
varying profile T(z) by a series of steps. If there are many layers, however, it is difficult

2 The wideness of the dip and narrowness of the hump result from the temperature and pressure dependences of
the Lorentz width γL: see equation (3.22).
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Fig. 7.7 Schematic satellite-observed radiance (solid line) for the two-layer atmosphere shown in
Figure 7.6. Planck functions at the temperatures Tg, T0 and T1 are given as dashed lines. It is
assumed that Aν(0) ≈ 1 and Aν(z1) ≈ 0.6 at the central frequency ν0.

Fig. 7.8 Infrared radiance measurements over the Mediterranean Sea from the IRIS instrument on the
Nimbus 4 satellite. Thermal emission from the atmosphere and the surface (solid curve) is shown
as a function of wavenumber (in units of cm−1) and wavelength (in units of μm), together with
the Planck function at several temperatures (dashed curves). Adapted from Hanel et al. (1971).

to draw simple insights from the resulting spectral data; we therefore adopt a different
approach, as follows. For convenience, we first introduce the log-pressure coordinate

Z = ln(p0/p), (7.4)

where p0 is the surface pressure. Recall from equation (2.15) that, for an isothermal
atmosphere at temperature T0, the pressure decreases exponentially with height, p =
p0 exp(−z/H), where H = RT0/g is the pressure scale height (H ≈ 7.6 km for T0 =
260 K). Therefore in this isothermal case Z = z/H . Although Z is not precisely proportional
to height for a non-isothermal atmosphere, it is still approximately so in the lower and middle
atmospheres. The quantity Z is sometimes called the ‘log-pressure in scale heights’.
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On changing variables from z to Z in the integral in equation (7.1), we obtain

Lν =
∫ ∞

0
Bν(T(Z))K(Z) dZ + Bν(Tg)Tν(0, ∞), (7.5)

where

K(Z) = ∂Tν(Z, ∞)

∂Z
(7.6)

is the weighting function; it weights the contributions to Lν from the Planck functions at
different log-pressure altitudes Z.

In certain simple cases, the weighting function can be evaluated explicitly. First note
from the definition (3.23) of the transmittance that, in terms of height,

Tν(z, ∞) = exp
(

−
∫ ∞

z
kν(z′)ρa(z′) dz′

)
,

where kν is the extinction coefficient and ρa is the density of the absorbing gas. Consider
the special case in which kν is independent of height and the absorber has a uniform mass
mixing ratio μa = ρa(z)/ρ(z), where ρ is the total atmospheric density. Then, using the
hydrostatic relation (2.12), the transmittance is found to take the simple form

Tν(z, ∞) = exp
(

−kνμap
g

)
≡ e−ξνp,

say, where

ξν = kνμa/g.

Note that ξνp is the optical depth at frequency ν from the satellite down to pressure p; see
Section 3.6. From equations (7.4) and (7.6) the weighting function is given in terms of p by

K = −p
∂Tν(z, ∞)

∂p
= ξνpe−ξνp, (7.7)

or in terms of Z by

K(Z) = ξνp0 exp − (
Z + ξνp0e−Z)

. (7.8)

Note that the weighting function (7.8), like the heating rate in equation (3.32), has a
Chapman layer structure: see Figure 7.9. From equation (7.7) it is easy to show that
the weighting function takes a maximum value of e−1 at a pressure p = pm ≡ 1/ξν =
g/(kνμa) and at Z = Zm = ln(ξνp0) = ln(kνμap0/g), corresponding to unit optical depth.
The integral in equation (7.5) therefore tends to be dominated by the Planck function
in the neighbourhood of this level and so gives a measure of the average brightness
temperature for this region. The thickness of the region depends on how sharply peaked
the weighting function is. To investigate this we consider the pressures at which K equals
half its maximum, namely 1/(2e): from equation (7.7) these are given by the equation

ξνpe−ξνp = 1
2e

.

With ξνp = x, this reduces to the equation 2x = exp(x − 1), which is found to have
the two roots x = 0.23 and 2.68. The half-maximum points therefore occur at pressures
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Fig. 7.9 A plot of the weighting function (7.8) as a function of the log-pressure coordinate Z, for an
absorber of constant mass mixing ratio and an extinction coefficient that is independent of
height, for the case ξνp0 = 4, i.e. pm = 0.25p0 ≈ 250 hPa. In this case the maximum of the
weighting function is at Zm = 1.39 and the points of half-maximum value are at Z1 = 2.85
(corresponding to p1 ≈ 58 hPa) and Z2 = 0.40 (corresponding to p2 ≈ 670 hPa). For other values
of pm the whole plot shifts up or down as a function of Z, without distortion.

p1 = 0.23pm and p2 = 2.68pm, corresponding to Z1 = Zm + 1.46 and Z2 = Zm − 0.99,
and a width in Z of Z1 − Z2 = 2.45 scale heights, a thickness of about 20 km.

Note that pm is inversely proportional to the extinction coefficient kν and that Zm is linear
in ln(kν). If measurements of the radiance are made at various frequencies ν, corresponding
to different kν , different vertical regions of the atmosphere therefore dominate the integral
in equation (7.5) (although the widths of the regions are still 2.45 scale heights). This fact is
the basis of a standard method of remote sounding: temperature measurements of different
vertical regions of the atmosphere can be inferred from radiance measurements at different
frequencies. However, the broad nature of the weighting function is a major disadvantage:
temperature measurements averaged over a depth of 20 km are not necessarily very useful.
Narrower weighting functions can be obtained by considering cases in which the extinction
coefficient is not independent of height (see Problem 7.6) or by using limb rather than
nadir sounding, in which radiance measurements are made along a tangent path through the
atmosphere, rather than vertically downwards; see Figure 7.1. An example of a stratospheric
temperature field, measured by a limb-sounding instrument, is given in Figure 1.8.

In practice, infra-red remote sounding based on measurements from isolated parts of
single spectral lines is not feasible, owing to poor signal-to-noise ratios. Therefore averages
over many lines must be taken, in such a way that desirable characteristics of the weighting
function are preserved.

Infra-red remote sounding of temperature in the Earth’s atmosphere invariably uses
emission from carbon dioxide, whose mixing ratio is nearly independent of height in the
lower and middle atmosphere. Once the temperature profile T(z) has been measured, a
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variant of the approach described above allows measurements of composition, with the
absorber density ρa (which appears in the transmittance Tν) being regarded as the unknown
quantity in equation (7.1).

7.2.2 Backscatter measurements

We now consider a different type of remote-sounding technique for measuring atmospheric
composition from space. The idea is to measure solar ultra-violet radiation that has been
directed back to space by Rayleigh scattering from atmospheric molecules (see Sections 3.1
and 7.3.2). The simplest case, in which both the incoming solar beam and the scattered
beam are vertical, is shown in Figure 7.10. First consider scattering from a layer of thickness
dz of atmosphere at height z. If the downward spectral radiance at frequency ν of solar
radiation at the top of the atmosphere is L↓

ν∞, then the downward spectral radiance at
height z is

Lν(z) = L↓
ν∞e−χν(z), (7.9)

where χν is the optical depth,

χν(z) =
∫ ∞

z
kν(z′)ρa(z′) dz′ (7.10)

(see equation (3.29)), kν being the extinction coefficient and ρa the absorber density. The
radiance scattered upwards from the layer is then of the form

Lν(z)ρ(z)sν(z) dz

Fig. 7.10 Illustrating the simplest case of backscattering of solar radiation to space, in which the incoming
and backscattered beams are vertical. Only the backscattering from the shaded layer, of thickness
dz, is indicated. The dashed line represents a notional ‘top of the atmosphere’.
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(cf. equation (3.8)), where ρ is the total atmospheric density and sν is a scattering coefficient.
This radiance is attenuated by a further factor exp(−χν(z)) as the scattered beam travels
back to space, so that the spectral radiance scattered from this layer that is measured at the
satellite is L↓

ν∞ ρ(z)sν(z) dz exp(−2χν(z)). Integrating over all layers, we therefore find
that the total backscattered spectral radiance measured at the satellite is

Ls
ν = L↓

ν∞
∫ ∞

0
ρ(z)sν(z)e−2χν(z) dz. (7.11)

Now suppose that kν is independent of z; then from equation (7.10) the optical depth is

χν(z) = kν

∫ ∞

z
ρa(z′) dz′ = kνma(z), (7.12)

where ma(z) is the total mass of absorber above height z. If the mass mixing ratio μa of
the absorber were constant, μ̄a, say, then we would have ma(z) = μ̄ap/g, where p is the
pressure at height z. Suppose that in fact the mixing ratio is not quite constant, so that

ma(z) = μ̄ap
g

+ m′
a(z), (7.13)

where m′
a is small. Then from equations (7.12) and (7.13),

e−2χν(z) = e−2kν μ̄ap/ge−2kνm′
a ≈ e−2kν μ̄ap/g(1 − 2kνm′

a)

if kνm′
a � 1. If sν is independent of z and the integration variable is changed from z to p,

equation (7.11) becomes

Ls
ν = L↓

ν∞sν

g

∫ p0

0
[1 − 2kνm′

a(p)]e−2ξ̄νp dp,

where

ξ̄ν = kνμ̄a/g.

Then, transforming to the log-pressure variable Z defined in equation (7.4), we get

Ls
ν = L↓

ν∞sν

g

∫ ∞

0
[1 − 2kνm′

a(Z)]K1(Z) dZ,

where

K1 = pe−2ξ̄νp = p0 exp[−(Z + 2ξ̄νp0e−Z)]
is a weighting function with similar vertical structure to that for emission measurements,
given in equations (7.7) and (7.8). The measured radiance Ls

ν therefore gives an estimate of
the quantity (1 − 2kνm′

a) near the altitude where the weighting function is a maximum. On
making measurements at various frequencies, corresponding to different weighting function
peaks, the vertical variation of m′

a and hence of the mixing ratio deviation μa − μ̄a, can
be estimated. An example of an instrument that uses the backscatter technique is the Total
Ozone Mapping Spectrometer, which has provided valuable information on the Antarctic
ozone hole; see Section 6.7.
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7.3 Atmospheric remote sounding from the ground

In this section we consider one example of passive ground-based remote sounding, namely
the Dobson ozone spectrophotometer, and two examples of active ground-based remote
sounding, namely radars and lidars.

7.3.1 The Dobson ozone spectrophotometer

Ground-based passive remote sounding is usually dominated by the tropospheric signal, so
stratospheric properties may be difficult to measure. A notable exception is the amount of
ozone, which has its highest concentrations in the stratosphere. This fact is exploited by the
Dobson ozone spectrophotometer, which measures the column ozone, the total number of
ozone molecules in a column of atmosphere of unit cross-section; see Section 6.7. Consider
a case when the Sun is at an angle θ from the vertical; θ is called the solar zenith angle.
If horizontal variations of the absorber density in the solar beam are negligible, scattering
is ignored and the extinction coefficient is independent of position, then the solar spectral
radiance at frequency ν at the ground is

Lν = L̃ν∞e−χν0 sec θ (7.14)

(cf. equation (7.9)), where L̃ν∞ is the solar spectral radiance along the line of sight from
the Sun, at the top of the atmosphere,

χν0 = kν

∫ ∞

0
ρa(z′) dz′ ≡ kνm0 (7.15)

is the optical path between the ground and space, and m0 is the total mass of absorber in a
vertical column of unit area. The factor sec θ in equation (7.14) allows for the increase in
path-length when the Sun is not overhead; see Figure 7.11.

Fig. 7.11 Illustrating how a non-zero solar zenith angle gives a greater path-length for the solar beam. A
path h for the overhead Sun becomes h sec θ when the Sun is at zenith angle θ . The ground is
shown shaded.
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From equations (7.14) and (7.15) we get

Lν = L̃ν∞e−kνm0 sec θ ;

likewise at another frequency ν′ but at the same solar zenith angle,

Lν′ = L̃ν′∞e−kν′ m0 sec θ .

Therefore, after division and taking logarithms,

ln
(

Lν

Lν′

)
= ln

(
L̃ν∞
L̃ν′∞

)
+ (kν′ − kν)m0 sec θ . (7.16)

The technique used in measuring column ozone is to choose two frequencies in the ultra-
violet, one with weak ozone absorption (small kν) and one with strong absorption (large
kν′ ), and carry out measurements at several zenith angles. Then, if the left-hand side of
equation (7.16) is plotted against sec θ , a set of points close to a straight line is found. The
slope of the line of best fit is (kν′ − kν)m0 and, if the extinction coefficients are known,
the total mass of absorber (ozone in this case) in a vertical column is obtained. From this
the column ozone is readily found.

Dobson exploited this idea in his ozone spectrophotometer, developed during the 1920s
and 1930s, using simple but effective experimental techniques, including a null method for
measuring Lν/Lν′ . Essentially the same instrument is still used world-wide for monitoring
amounts of column ozone, and it was from a long series of observations with such an
instrument that the Antarctic ozone hole was discovered; see Section 6.7.

7.3.2 Radars

Radars employed for atmospheric observation measure the backscatter of pulses of radio
waves. Weather radars utilise backscattering of radio waves (with wavelengths of a few
centimetres) from water drops and ice crystals in the troposphere to estimate precipitation
rates, thus providing important data for weather forecasting systems. In the lower and mid-
dle atmosphere, backscattering of waves with a wavelength of a metre or so can take place
from inhomogeneities in the atmospheric refractive index N for radio propagation. These
inhomogeneities may, for example, be due to fluctuations of temperature and humidity
associated with patches of turbulence, stratification of atmospheric properties in thin layers
and regions of ionisation (including ionisation due to meteor trails). The length scales of
inhomogeneities that give rise to strong scattering are of the order of half the radio wave-
length or greater.3 In this section we shall focus on backscattering from inhomogeneities
in N , rather than from precipitation.

3 Compare with Bragg X-ray diffraction from crystals, for which constructive interference occurs when 2d sin θ =
nλ, where d is the interplanar spacing, θ is the grazing angle, λ is the wavelength and n ≥ 1 is an integer. From
this equation it follows that d ≥ λ/2. For radar scattering we have a similar formula except that d is interpreted
as the length scale of the inhomogeneities in N .
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Suppose that a radar transmits waves in pulses of duration τ , separated by much longer
time intervals, and, for simplicity, assume that the pulses are of ‘top-hat’ (‘box-car’) shape;
see Figure 7.12(a). In the case of scattering from a single target at a distance, or range, r1
(see Figure 7.12(b)), the scattered pulse detected by the receiver (taken to be at the same
location as the transmitter) is of the same duration and shape as the transmitted pulse, if
dispersion is neglected. It is clear from Figure 7.12(b) that the time at which the beginning
of the pulse is received is t1 = 2r1/c, where c is the speed of light. However, if scattering
takes place at all ranges (see Figure 7.12(c)), then echoes from all ranges between r1 − �r
and r1 reach the receiver at time t1, echoes from all ranges between r1 and r1 +�r reach the

Fig. 7.12 (a) A sketch of the power Pt transmitted by a radar as a function of time, showing the pulses of
duration τ , assumed to be of ‘top-hat’ shape. (b) A plot of range r against ct, for the case of a
single target at range r1, indicating the paths of transmitted and reflected pulses. Because of the
scaling of the axes, these paths have slope ±1, which makes it clear that t1 = 2r1/c. (c) The same
as (b), but for the case in which scattering takes place at all ranges. The shaded square indicates
the time-varying volume of scatterers giving echoes received between times t1 and t1 + τ . Since
the diagonals of the square are equal, 2 �r = cτ .
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Fig. 7.13 Illustrating the scattering of a plane wave, carrying energy flux F, by an object (shaded). Power
P(n) d� is scattered into solid angle d� in the direction n.

receiver at time t1 +τ and so on, where 2 �r = cτ . Therefore, at any instant between t1 and
t1+τ echoes are received from a layer of thickness �r = cτ/2, called the range resolution.
The range resolution gives the spatial resolution on which atmospheric quantities can be
measured: for typical pulse lengths of a few microseconds it is a few hundred metres.

An important concept in scattering theory is the differential scattering cross-section,
dσ/d�. Consider scattering from a single object, as in Figure 7.13. A plane wave, carrying
an energy flux (power per unit area) F say, is incident on the object and a set of scattered
waves, in general propagating outwards in all directions, is produced. Then the differential
scattering cross-section is defined as the scattered power P(n) per unit solid angle in a
direction n, divided by the incident flux F:

dσ

d�
= P(n)

F
.

In the case of electromagnetic waves of frequency ν scattering off an object whose dimen-
sions are much smaller than a wavelength λ = c/ν, the differential scattering cross-section
satisfies Rayleigh’s law,

dσ

d�
∝ 1

λ4 ∝ ν4; (7.17)

proofs of this equation are given in advanced texts.4

4 Note that equation (7.17) implies that blue light is scattered more than red light. The same result applies to a
random distribution of scatterers, which fact was applied by Rayleigh to the scattering of light from atmospheric
molecules. Away from the direct solar beam, scattered blue light will predominate, leading to the blue colour
of the clear sky. On the other hand, the direct beam itself will appear reddened, since much of the blue spectral
component is scattered out; this is especially noticeable at sunset, when the atmospheric path-length of the solar
beam is greater than that at midday.
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Consider the simple, idealised, case of a radar transmitting power Pt in the form of
spherical waves within a cone of solid angle α < 2π . Suppose that a single isotropic
scatterer of constant differential scattering cross-section dσ/d� is present at range r on the
axis of the cone; the energy flux F incident on the scatterer is Pt/(αr2). If the radar receiver
has an antenna area A, perpendicular to the axis of the cone, it subtends a solid angle A/r2

at the scatterer. It follows that the scattered power received by the radar is

Pr = Pt

α

( dσ

d�

) A
r4 . (7.18)

(The transmittance at radio frequencies may be taken to be unity.) Note the r−4 dependence
of Pr; this radial dependence would apply for scattering from an aircraft, for example.

Now suppose instead that the beam is filled with n scatterers per unit volume, each of
differential scattering cross-section dσ/d�, between ranges r and r+�r, where �r = cτ/2
is the range resolution, τ being the pulse length. The beam need not be vertical; if it is
pointed at a zenith angle θ it can be shown from equation (7.18) that the received power Pr
is given in terms of the transmitted power Pt by

Pr = Pt
A cos θ

r2 βη �r, (7.19)

where A is the area of the radar array, β is a volume scattering coefficient and η is an
efficiency and geometric factor for the radar. If the scattering is due to turbulence, the
scattering coefficient β may depend in quite a complicated way on turbulent fluctuations of
the refractive index N . If the scattering is from random thermal motion of free electrons in
the ionised part of the atmosphere above about 60 km altitude, then β ≈ neσe/2, where ne
is the free-electron number density and σe is the backscattering cross-section of an electron.
Note that the radial dependence in equation (7.19) is r−2, in contrast to the r−4 dependence
in equation (7.18); this is because the scattering volume is itself proportional to r2.

An alternative situation is one in which vertically emitted radio waves are reflected
from an extensive horizontal layer in which the refractive index varies rapidly with height.
In this case

Pr = Pt
A2

r2
η′

λ2R,

where η′ is another efficiency and geometric factor, R is the power reflection coefficient
for the layer and λ is the radio wavelength. This is an example of partial or specular
reflection. The dependence of R on the vertical gradient of the refractive index can be
calculated in some cases, the simplest being that in which there is a jump �N at a given
height; see Problem 7.9.

A semi-empirical expression for the refractive index for radio waves of angular
frequency ω is

N − 1 = a1
e

T2 + a2
p
T

− neq2
e

2ε0meω2 , (7.20)

where p is the atmospheric pressure, e is the partial pressure of water vapour, T is the
temperature, ne is the number density of free electrons, qe is the electronic charge, me is
the mass of the electron, ε0 is the permittivity of free space, and a1 and a2 are constants.
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The first term on the right-hand side of equation (7.20) results from bound electrons present
in density fluctuations of water vapour: this is most important in the lower troposphere,
where water-vapour mixing ratios are highest. The second term (which is proportional to the
air density, by equation (2.2)) results from bound electrons present in density fluctuations
of dry air and is most important in the upper troposphere and the stratosphere. The third
term results from free electrons and is most important above about 50 km, where the free
electron density increases rapidly with height. Each of the terms on the right-hand side of
equation (7.20) is much less than 1 in magnitude.

Partial reflection techniques allow the radio refractive index N to be measured and hence
offer the possibility of estimating the atmospheric quantities on which N depends, such as
temperature and the free-electron density.

By measuring the Doppler shift of radar echoes from turbulence, an estimate of the
radial (line-of-sight) component V of the wind velocity can be obtained, assuming that the
turbulent region moves with the mean wind. Consider two short radar pulses emitted at
times t = 0 and t = t0, respectively. If the first pulse reaches the scattering region at a
radial distance r1, it is received back at the radar at time 2r1/c; see Figure 7.14. By the
time the second pulse has reached the scattering region, this region has moved. If it is
now at a range r2, consideration of the extra distance travelled by the outgoing radar wave
shows that r2 = r1 + Vt0 + V (r2 − r1)/c. However, since V � c (this calculation is of
course non-relativistic) we have r2 = r1 + Vt0 to a very good approximation. The time
difference between the reception of the reflected pulses is therefore t0 + 2(r2 − r1)/c =
t0(1 + 2V/c).

If we apply the same argument to two adjacent peaks, say, of a sinusoidal radio wave
of angular frequency ω0 = 2π/t0, then the Doppler-shifted angular frequency of the
reflected wave is ωr = ω0/(1 + 2V/c) ≈ ω0(1 − 2V/c). Hence the change of frequency is

Fig. 7.14 A plot of radial distance r against ct, illustrating the Doppler effect for radar measurements. The
paths of two transmitted pulses and their reflections are shown. The bold sloping line shows the
path of the scattering region; its slope is greatly exaggerated, since V � c. The Doppler effect is
demonstrated by the fact that the time difference between the returning pulses is greater than
that between the transmitted pulses. See the text for further details.
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δω = ωr − ω0 = −2ω0V/c and, if δω is measured, the radial component V of velocity is
obtained.

If the radar is pointed in a direction given by the unit vector n, then V = n ·u, where u is
the wind vector. By varying the direction n and assuming that u does not vary significantly
between the different scattering regions thus observed, the separate horizontal and vertical
components of the wind can be inferred.

A variant on the above method is to measure the Doppler shift of radio waves scattered
by patches of ionisation produced by meteors entering the atmosphere. These give wind
estimates at altitudes between 80 and 100 km.

Another method for measuring the horizontal components of velocity of a moving
scattering region is the spaced antenna technique. As the scattering region moves through
the transmitted radar beam, it produces a moving diffraction pattern at the ground, which
is sampled by a number of spaced receivers. Cross-correlation of the received signals
allows the time delays between each of the receivers, and hence the required velocity, to be
measured. As with the Doppler method, it is necessary to assume that the scattering region
is moving with the wind.

Wind measurements of these types have been very important in determining the structure
of gravity waves (see Section 5.4) in many parts of the atmosphere. An example of the use
of the Doppler technique is the observation by Balsley et al. (1983) of an inertia–gravity
wave, shown in Figure 1.7. The magnitude of turbulent fluctuations about the mean wind
can be obtained from the Doppler width of the echoes.

7.3.3 Lidars

A lidar5 consists of a vertically directed laser that transmits pulses of radiation, typ-
ically at visible and ultra-violet wavelengths, into the atmosphere; the backscattered
radiation is measured, after a time delay, at the same site as the transmitter. The geo-
metric and physical principles involved are similar to those for measurement using radars,
described in Section 7.3.2, except that the effects of atmospheric absorption must now
be considered and scattering takes place from molecules and aerosols, rather than from
refractive-index variations. If a pulse of length τ and power Pt is transmitted by the laser,
then the power scattered from a layer of thickness �z at height z and detected by the
receiver is

Pr = Pte−2χ(z)n(z)
( dσ

d�

) A
z2 η �z.

Here χ(z) is the optical path (at the frequency ν of the laser) between the ground and
height z; n(z) is the number density of the scattering species and dσ/d� is its differential

5 Light detection and ranging.
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backscattering cross-section; and A is the telescope area and η the optical efficiency of the
receiver. The height z at which scattering takes place can be inferred from the time delay
2z/c between transmission and reception of the pulse, where c is the speed of light. The
range resolution �z = cτ/2 typically lies between a few tens of metres and a hundred
metres.

In the case in which the scattering is Rayleigh scattering from any atmospheric molecule,
dσ/d� = aν4 by equation (7.17), where a is a known constant. The method can then be
used to obtain the total number density n(z) of the atmosphere and hence the density
ρ(z) = mn(z) (where m is the mean molecular mass), at height z. Rayleigh scattering is
important for wavelengths less than about 3 μm and allows measurements of density from
heights between about 10 and 90 km. The temperature can be obtained by use of the ideal
gas equation (2.2) and the hydrostatic equation (2.12): see Problem 7.10.

In the case of scattering from aerosol particles, whose sizes may approach or exceed
the laser wavelength, Rayleigh scattering does not apply, and the more complex Mie
scattering is the relevant process. It is difficult to use lidar measurements to quantify
aerosol concentrations, but one can instead plot the lidar backscatter ratio R, defined as
the ratio of the total number of backscattered photons (from molecules and aerosols) at
frequency ν to the number of backscattered photons from molecules alone:

R = βmol + βaerosol

βmol
,

where βi = ni dσi/d�. Layers of high aerosol content, due for example to volcanic eruption,
show up as sharp peaks in R(z); see Figure 7.15.

Lidars with tunable dye lasers, tuned to the frequency of specific atomic or molecular
transitions, can be used to measure the vertical distribution of chemical species, including
various alkali atoms (deposited in the atmosphere from meteors) and ozone. For example
the 2S1/2 − 2P3/2 transition of sodium at 589.0 nm is associated with an enhanced scat-
tering cross-section (this is an example of resonance scattering), which allows the lidar
measurement of amounts of sodium at heights of 80–100 km.

Further reading

A brief discussion of remote sounding from space is given by Houghton (2002), and
comprehensive treatments by Houghton et al. (1984) and Hanel et al. (2003). A description
of the Dobson ozone spectrometer is given by Dobson and Normand (1957). The basic
physics of atmospheric radars and some typical results are presented by Balsley and Gage
(1980); for a review of lidars see Thomas (1987).

Basic texts on electromagnetic waves include those by Lorrain et al. (1988) and
Grant and Phillips (1990). The detailed physics of Rayleigh scattering is covered in
the advanced texts by Jackson (1998) and Born and Wolf (1980); a descriptive account
of the phenomenon is given by Lynch and Livingston (2001), who also detail many
other examples of atmospheric optical phenomena. Mie scattering is treated by Liou
(2002).
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Fig. 7.15 Height profiles of the lidar backscatter ratio R measured at Aberystwyth (52◦ N, 4◦ W), showing a
build-up in the lower stratosphere of volcanic aerosols from Mt Pinatubo (see Vaughan et al.
(1994)). On 17 August 1991, R ≈ 1 throughout the profile, indicating that little aerosol is present.
On 16 September, R exhibits a peak in a thin layer at about 20 km altitude. On 8 December there
is a very large peak, extending over a deep layer centred at about 23 km. On 28 January 1992 a
double-peaked structure is present. Based on data provided by Dr G. Vaughan.

Problems

Problem 7.1 Consider a thin layer of gas of uniform density, between altitudes z and
z + d in a spherical atmosphere, emitting thermal radiation. Show that the ratio of the
maximum mass of the gas in a limb-viewing path to the mass of gas in a nadir-viewing path
is approximately (8a/d)1/2, where a is the Earth’s radius. Evaluate this ratio for d = 10 km
and comment on your result.
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Fig. 7.16 Emission spectra from Mars obtained with the IRIS instrument on Mariner 9 (adapted from Hanel
et al. (1972)). Top panel: spectra recorded over the south polar region; upper curve includes a
smaller fraction of the polar ice cap than the lower curve. Middle panel: spectrum recorded near
21◦ S. Lower panel: spectrum recorded near 66◦ N; note that the condensation temperature of CO2

at Martian surface pressures is about 145 K. Diagram prepared with the help of Dr S. R. Lewis,
using data from the Planetary Data System.

Problem 7.2 Derive equation (7.1) from equation (3.13), assuming local thermodynamic
equilibrium, given that the Earth’s surface is a black body.

Problem 7.3 Figure 7.16 shows emission spectra from Mars.

1. What do the fine features between 50 and 25 μm, especially in the south polar spectra,
indicate?

2. What is responsible for the large feature centred on 15 μm?
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3. What can be said about the surface and atmospheric temperatures?
4. What can be learnt from a comparison of terrestrial (e.g. Figure 7.8) and Martian

midlatitude spectra?

Problem 7.4 Measurements of outgoing radiation are made at three wavelengths by a
nadir-viewing radiometer in Earth orbit, with the following results:

1. brightness temperature 310 K (at 11 μm, in the atmospheric window),
2. brightness temperature 220 K (at 15 μm, in the CO2 band), and
3. brightness temperature 280 K (at 9.6 μm, in the O3 band).

Assuming that the surface is black, that the CO2 absorption is so strong at wavelength
(b) that the stratosphere is black there and that all the ozone resides in the stratosphere,
calculate the transmittance of the ozone layer at 9.6 μm. What could we learn about the
ozone layer from this?

(The Planck function Bν at 9.6 μm is approximately 5, 21 and 36 in units of
10−13 W m−2 steradian−1 Hz−1 at 220, 280 and 310 K, respectively.)

Problem 7.5 The 11 μm region is often referred to as being in a ‘window’ in the terrestrial
atmosphere, but there is still some absorption, mainly due to water vapour. Assuming that
the absorption coefficient k due to the water is k = αe, where e is the vapour pressure and
α is a constant, and that the mass mixing ratio μ at pressure level p is μ0(p/p0)

3, where
μ0 and p0 refer to the bottom boundary and μ0 is small, show that the transmittance of a
vertical path from level p to a satellite is exp[−β(p/p0)

8] where

β = α

g
M

Mw

μ2
0p2

0
8

and Mw and M are the molar masses of water vapour and air, respectively.
Given that α = 7×10−6 m2 kg−1 Pa−1 and that the temperature T0 and relative humidity

Λ0 at the bottom boundary are 290 K and 70%, respectively, show that β = 0.102 and
calculate the transmittance from the surface to the satellite. (The SVP of water vapour at
290 K is 1936.7 Pa.)

Write down an expression for the net deficit in the spectral radiance received from the
surface by a nadir-viewing radiometer due to attenuation and emission by water vapour.
Evaluate this deficit for the case of a (black) sea surface at temperature T0 for the conditions
given above, assuming that T = T0(p/p0)

δ and Bν = η(T/300)γ . Take p0 = 105 Pa,
δ = 0.29, η = 4 × 10−12 W m−2 steradian−1 Hz−1 and γ = 4.5.(∫ 1

0
y8.305 exp(−0.102y8) dy = 0.102

)

What would be the error in inferring the temperature of the sea surface from radiance
measurements if the effect of the water vapour were not taken into account? Is this error
significant?
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Problem 7.6 What is meant by a weighting function in atmospheric remote sounding?
Show that, if the transmittance T (p) = exp(−βpα), where α and β are constants, and if the
height-like variable Z = ln(p0/p) is used as a vertical coordinate, the vertical weighting
function is

K(p) = αβpα exp(−βpα).

Find α and β for an isothermal atmosphere containing an absorber with a small and constant
mass mixing ratio μ when

1. the absorber is grey with constant absorption coefficient k;
2. the radiometer is sensitive to a single frequency in the far wings of a Lorentz line; and
3. the radiometer is sensitive to a spectral interval in which the transmittance from level p

to the satellite is given by the strong limit of the Goody random model,

T = exp
(

−2
δ
(SmγL)1/2

)
,

where S is the mean line strength, m is the mass of absorber per unit area in the path, γL
is the mean Lorentz half-width and δ is the mean line spacing.

Problem 7.7 Find the pressure levels at which the peaks of the weighting functions occur
and find also the widths (in terms of pressure) at half maximum of the weighting functions
of the previous question. Sketch the functions for cases (a) and (b).

(The roots of 2x = e x−1 are approximately 2.68 and 0.23.)

Problem 7.8 Verify the last term on the right-hand side of equation (7.20) for the radio
refractive index, by ignoring the effects of bound electrons and proceeding as follows.

It can be shown (see Lorrain et al. (1988) or Jackson (1998)) that the dispersion relation
for transverse plasma waves is

ω2 = ω2
p + c2k2,

where the plasma frequency ωp is given by

ω2
p = neq2

e
ε0me

,

in the notation of Section 7.3.2. Hence show that, if ω2 � ω2
p,

N ≡ ck
ω

≈ 1 − neq2
e

2ε0meω2 .

Problem 7.9 Suppose that the atmosphere has a radio refractive index N (z) given by

N = N1 for z < z0, N = N2 for z > z0.

Consider a vertically propagating electromagnetic wave incident on the level z = z0 from
below. By using standard methods for calculating the reflected wave (see, e.g., Grant and
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Phillips (1990) or Lorrain et al. (1988)) show that the power reflection coefficient R (the
ratio of the reflected to the incident power) is given by

R = 1
4 (N1 − N2)

2

when N1 and N2 are both close to 1. (You may find it convenient to take z0 = 0 for this
calculation.)

Problem 7.10 Given observations of density ρ(z) from lidar measurements and the
temperature T(zm) at a single height zm, use the ideal gas equation and hydrostatic balance
to show that the full temperature profile T(z) can be obtained from

T(z) = 1
ρ(z)

(
ρ(zm)T(zm) + g

Ra

∫ zm

z
ρ(z′) dz′

)
.

Show that the term ρ(zm)T(zm) → 0 as zm → ∞. (In practice zm is taken as the maximum
height of the lidar measurements and a value of T(zm) is guessed; the resulting values of
T(z) are not very sensitive to this guess.)
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This chapter presents a selection of topics on the physics of climate change. By way of
introduction, in Section 8.1 we briefly discuss greenhouse gases and the radiative forcing
associated with several drivers of climate change. Then in Sections 8.2 and 8.3 we introduce
a very simple time-dependent, ‘energy balance’, climate model. This model illustrates some
key concepts that arise in the study of the physics of the Earth’s climate and its response
to external forcing, and in the diagnosis of the highly complex models that are used to
simulate the climate of the past and present and to predict future climate. In Section 8.4 we
examine some elementary aspects of the important topic of climate feedbacks. Finally, in
Section 8.5 we use another simple model to examine the basic physics of the process by
which the radiative forcing due to carbon dioxide increases with its concentration.

Our emphasis in this chapter is on the underlying physical principles of climate change;
we shall not discuss in any detail the climate-change projections by the current range
of complex general circulation models. Comprehensive information on these projections
is provided for example by the Assessment Reports of the Intergovernmental Panel on
Climate Change (IPCC). The most recent such report is that of Solomon et al. (2007),
which includes useful summaries for non-specialists and a glossary of technical terms.

8.1 Introduction

The greenhouse effect was introduced in Section 1.3 and discussed further in Section 3.7.
We now consider the effects of different greenhouse gases, i.e. gases that absorb and
emit infra-red radiation but allow solar radiation to pass through without significant
absorption.

As a starting point, consider a hypothetical atmosphere containing no greenhouse gases
or other absorbers. Given an unreflected (i.e. absorbed) solar irradiance F0 ≈ 240 W m−2,
the surface temperature (assumed uniform) is about 255 K, as shown in Section 1.3.1. To
quantify the effects of greenhouse gases in raising this to the current global-mean surface
temperature of about 288 K, which has a black-body irradiance of about 390 W m−2, one can
say that these gases currently ‘provide a greenhouse effect’ of about 390–240 = 150 W m−2.
(We ignore the long-wave effects of clouds here.) In physical terms, the greenhouse gases
absorb some of the radiation emitted by the warm surface and emit a lesser amount of
radiation from cooler tropospheric regions aloft; they also emit energy downwards, and
hence help to warm the surface. See Problem 8.1 for a simple model of this process.
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An important corollary is that, all else being equal, a decrease of upper-tropospheric
temperatures leads to an increase in the greenhouse effect.

It would be of interest to apportion this greenhouse effect between the different gases:
however, this cannot be done in a simple way, given the large difference in composition
between the hypothetical and actual atmospheres, because the effects of the separate gases
do not add linearly. (See Problem 8.2.) For example, numerical experiments in which
different greenhouse gases are in turn completely removed from the atmosphere show that
the greenhouse effect due to both CO2 and water vapour is smaller than the sum of the
individual effects of each of them. Nevertheless it is clear that water vapour is the most
important greenhouse gas in determining the current atmospheric state, contributing around
2/3 of the current greenhouse effect, and that CO2 is the next most important, contributing
around 1/4.

Different considerations apply when we consider the response of any given climate
state (for example, the current climate or the ‘pre-industrial’ climate), to perturbations
to the various absorbing gases or other climate variables. Examples of interest include
perturbations to greenhouse gas concentrations, aerosols, clouds or albedo, and especially
those perturbations caused by human activities. Here an important quantity is the radiative
forcing, defined as the net decrease of the upward irradiance at the tropopause due to a
change in some climate-change driver, such as a specified increase in the amount of a
gaseous absorber. It is assumed that the surface and troposphere are otherwise held fixed
and that stratospheric temperatures, if perturbed, have readjusted to radiative-dynamical
equilibrium.

The net upward irradiance at the tropopause equals the outgoing irradiance minus the
unreflected incoming solar irradiance there; in equilibrium, this would be zero. If the
radiative forcing (RF) is positive, the incoming irradiance exceeds the outgoing irradiance
and there is a positive net heat flux into the climate system below the tropopause, leading
to a warming of the climate; a negative RF contributes to a cooling of the climate. An
important example of a positive RF is provided by the enhanced greenhouse effect, in
which an increase in a tropospheric greenhouse gas decreases the outgoing long-wave
irradiance (often called the outgoing long-wave radiation, or OLR). Calculation of the
RF due to atmospheric aerosols is very complex: they lead to ‘direct’ effects, by scattering
and absorbing long-wave and short-wave radiation, and to ‘indirect’ effects, by modifying
the microphysical and hence the radiative properties of clouds; overall, both effects are
believed to give negative RFs.

Figure 8.1 shows estimated values of the RFs associated with the main climate-change
drivers for the period 1750–2005; for the comparatively small perturbations involved,
the separate effects do add fairly linearly. Drivers with positive RFs include the long-lived
greenhouse gases carbon dioxide, methane (CH4), nitrous oxide (N2O) and the halocarbons
(including CFCs), and also tropospheric ozone and stratospheric water vapour. Aerosols
have negative RFs, while surface albedo changes can contribute either positive or negative
RFs. These drivers are all significantly affected by human activities; the only significant and
sustained natural RF over the period was due to an increase in solar irradiance, although the
11-year solar cycle causes oscillatory changes in RF, and stratospheric aerosols resulting
from massive volcanic eruptions can give short-term negative RFs.
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Fig. 8.1 Summary of the principal components of the radiative forcing of climate change. The values
represent the forcings in 2005 relative to the start of the industrial era, taken as 1750. The thin
black line attached to each bar represents the range of uncertainty for the respective value. For
the CH4, N2O and halocarbon block, the error is for the three gases combined. The levels of
scientific understanding of the various components are estimated as high for the long-lived
greenhouse gases, medium for ozone and medium–low or low for the others. (Figure from
Solomon et al. (2007), FAQ 2.1, Figure 2.)

Tropospheric water vapour does not feature in Figure 8.1: rather than providing an
RF of its own, water vapour primarily acts by modifying the effects of other climate
drivers. This is because it is a short-lived gas: its concentration varies on small time
and space scales, mainly by exchange with the large liquid water reservoir through rapid
condensation and evaporation processes, which are strongly temperature-dependent. Since
a temperature increase leads to an increase in the amount of water vapour by the Clausius–
Clapeyron equation (2.37), and increased water vapour gives a decreased OLR and hence
a warmer climate, water vapour provides a positive feedback on temperature changes: see
Section 8.4.2.



198 Climate change

8.2 An energy balance model

In this section we introduce a very simple zero-dimensional energy balance model (EBM)
of the time-dependent response of the climate system to radiative forcing. In this model the
term ‘climate system’ is taken to encompass the top 100 m or so of the ocean (the ocean’s
‘mixed layer’) together with the troposphere and the land surface: these three components
are assumed to be represented by a ‘global-mean’ temperature T . Heat transport into the
deep ocean is neglected for simplicity, so the only heat transfers into and out of the climate
system are due to the absorbed solar (short-wave) radiation and the outgoing long-wave
radiation, respectively.

This is clearly an extremely simplified version of the real, highly complex, climate
system. However, it allows us to identify some important basic properties of the real
system, and to explore some possible ways in which the climate may change in response
to radiative forcing.

The EBM is described by the equation

C
dT
dt

= F↓ − F↑, (8.1)

which states that, averaged over the Earth, the rate of change of heat content per unit
horizontal area of the climate system is given by the net heat flux into the climate system,
i.e. the difference between the incoming and outgoing radiative power per unit area. Here
F↓ is the solar (short-wave) irradiance absorbed by the climate system, and is equal to
the unreflected incoming solar irradiance at the top of the troposphere. Neglecting any
absorption of solar radiation above the tropopause we can take

F↓ = F0 ≡ 1
4 (1 − A)Fs, (8.2)

(see equation (1.3)), where F0 ≈ 240 W m−2, A is the planetary albedo and Fs is the total
solar irradiance (TSI). Note that this expression for F↓ does not depend on the temperature
or greenhouse gas concentration of the atmosphere. On the other hand, the outgoing (long-
wave) irradiance or OLR F↑ does generally depend on the temperature, water vapour
content, carbon dioxide concentration, etc., of the troposphere.

The constant C is the heat capacity per unit horizontal area of the climate system. A
simple approximation is to take it as the heat capacity per unit area of the oceanic mixed
layer times the fraction (∼0.7) of the Earth’s surface covered by ocean.

We suppose for the moment that the net heat flux F↓ − F↑ into the climate sys-
tem depends only on the temperature T and the concentration U , say, of a particular
greenhouse gas,

F↓ − F↑ = Q(T , U). (8.3)

In a steady-state climate at constant temperature T = Tss and concentration U = Uss, we
have CdT/dt = 0 and so

Q(Tss, Uss) = 0. (8.4)
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If this steady state is now slightly perturbed, so that T = Tss + T ′(t) and U = Uss + U ′(t),
where T ′ � Tss and U ′ � Uss, we obtain the linearised form

C
dT ′

dt
= Q(Tss + T ′, Uss + U ′)

≈ ∂Q
∂T

T ′ + ∂Q
∂U

U ′, (8.5)

where we have expanded Q(T , U) to first order in T ′ and U ′ and used equation (8.4). The
partial derivatives are evaluated at (T , U) = (Tss, Uss).

We now define the climate feedback parameter

α = −∂Q
∂T

. (8.6)

An analogy with feedback in a simple electronic circuit can be made by considering an
electromotive force E across an inductance L that carries current I, so that E = LdI/dt. A
feedback is present if E depends on I, for example through the linear relation E = F −αI
where F and α are constants.

The climate feedback parameter α quantifies how the net downward heat flux Q varies
with temperature. If Q decreases with temperature, α is positive and tends to damp temper-
ature perturbations. On the other hand if Q increases with temperature, α is negative and
tends to enhance temperature perturbations.

In Section 8.4 we examine in more detail the processes that contribute to climate feed-
back. As noted there, typical global-mean values of α are positive under current climate
conditions, though under extreme climates they might become negative.

We also define the radiative forcing

F = ∂Q
∂U

U ′ (8.7)

so that equation (8.5) can be written

C
dT ′

dt
+ αT ′ = F(t). (8.8)

The radiative forcing F as defined in equation (8.7) quantifies the change in the net
inward heat flux F↓ − F↑ at the top of the troposphere associated with a small change U ′
of a greenhouse gas from its steady-state value. As we have seen in Section 8.1, it can be
defined more generally for a finite change and applied to quantities other than greenhouse
gases.

It is not possible to give precise values of the feedback parameter or the heat capacity for
the Earth’s climate system. However, experiments with the complex climate models cited
in Solomon et al. (2007) suggest that α ≈ 1 W m−2 K−1 and C ≈ 1 GJ K−1 m−2 might be
typical order-of-magnitude estimates.

It should be noted that our linearised EBM (8.8) ignores the possibility of climate change
in the absence of an external forcing; this might be brought about, for example, by non-linear
interactions between different components of the climate system.
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8.3 Some solutions of the linearised energy balance model

Equation (8.8) is a first-order linear differential equation for the deviation T ′ of the global-
mean temperature from its steady-state value Tss. A formal solution of this equation, for
arbitrary radiative forcing F(t) and suitable initial conditions, can easily be obtained by
the standard ‘integrating factor’ method, as outlined below. In this section we assume that
α > 0.

Note that the quantity

τ = C
α

(8.9)

has the dimensions of time: it is in fact a relaxation time, but is also called the feedback
response time (FRT). Using the order-of-magnitude estimates of C and α quoted in the
previous section, we expect τ to be roughly on the order of 109 s ≈ 30 years for the Earth’s
climate system.

To solve equation (8.8) we divide by C and multiply by the integrating factor exp(t/τ)

to get

d
dt

(
T ′et/τ ) = F(t)

C
et/τ . (8.10)

We assume that T ′ = 0 at an initial time t = 0, and integrate equation (8.10) to obtain the
formal solution

T ′(t) = e−t/τ

C

∫ t

0
F(u) e u/τ du. (8.11)

To get a feel for the behaviour of solutions of the form (8.11), we look at the responses
to a few simple but important examples of forcings F(t) with different time variations.

Step function forcing

Here we take F to be a step function of time:

F(t) = 0 for t ≤ 0, = F1 for t > 0, (8.12)

where F1 is a constant. It is then easy to show that the temperature response is given by

T ′(t) = S
(
1 − e−t/τ ) for t > 0, (8.13)

where

S = F1

α
(8.14)

is called the climate sensitivity:1 it is the asymptotic value approached by the temperature
perturbation T ′ as t → ∞, when αT ′ ∼ F in equation (8.8). Figure 8.2(a) plots the time
evolution of the step-function forcing and the resulting temperature response. Note that T ′

1 Confusingly, α−1 is also sometimes called the climate sensitivity; we shall avoid this usage.
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Fig. 8.2 The EBM’s temperature response (solid lines) to three different forcings (dashed lines), plotted
against non-dimensional time t/τ . (a) Response to step function forcing, given by equation (8.12)
with F1 > 0; the scaled temperature is T′/S and the scaled forcing is F/F1. (b) Response to ramp
forcing, given by equation (8.15) with γ > 0; the scaled temperature is T′α/(γ τ) and the scaled
forcing is F/(γ τ). (c) Response to exponentially decaying pulse forcing, given by equation (8.17)
with F1 > 0 and t0 = 0.05τ ; the scaled forcing is F/F1, and the scaling of temperature is discussed
in Problem 8.3.

increases linearly, like St/τ , for t � τ ; its initial slope S/τ = F1/C by equations (8.9)
and (8.14), and hence is independent of the feedback parameter α. However, the feedback
comes into play for t � τ and T ′ then starts to level off, reaching 0.95S at about t = 3τ .

Ramp forcing

Here the radiative forcing increases linearly with time, for t > 0:

F(t) = 0 for t ≤ 0, = γ t for t > 0, (8.15)
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where γ is constant. This is a good representation of the radiative forcing due to increasing
carbon dioxide, since the CO2 mixing ratio is currently increasing exponentially in time,
by about 0.5% per year, and the radiative forcing goes roughly like the logarithm of the
CO2 mixing ratio: see equation (8.24). In this case the solution is a little more difficult to
obtain, but turns out to be

T ′(t) = γ τ

α

( t
τ

− 1 + e−t/τ
)

for t > 0. (8.16)

Figure 8.2(b) shows the time-development of the forcing and the solution. It can be checked
from equation (8.16) that T ′ initially (for t � τ ) grows quadratically with time, but later
(for t � τ ) the growth becomes linear with time: this behaviour is clear from the diagram.

Exponentially decaying pulse forcing

Here we take

F(t) = 0 for t ≤ 0,

= F1 e−t/t0 for t > 0, (8.17)

where F1 and t0 are constants. With F1 < 0 this might be a representation of the forcing
due to the injection of aerosols into the stratosphere from a massive volcanic eruption.
Figure 8.2(c) shows the time-development of the forcing and the solution for the case
t0 = 0.05τ , corresponding for example to values of t0 = 1.5 years and τ = 30 years. Note
that the response is spread over a time scale of order τ , which in this case is much longer
than the time scale t0 of the pulse. See also Problem 8.3.

Sinusoidal forcing

Here we take

F(t) = F2 sin(ωt) (8.18)

for all t, where F2 is a constant, and seek a purely oscillatory response. This could
approximately represent forcing by the 11-year solar cycle, for example. See Problem 8.4.

Note that the assumption α > 0 implies that all of these solutions are stable, in the sense
that the temperature response cannot grow faster than the forcing. It can easily be checked
that if α < 0 the solutions will grow exponentially with time, leading to unstable climate
change in the EBM.

8.3.1 Response to forcing that initially increases linearly with time
and then becomes constant

To introduce some of the issues that arise in detailed climate-change modelling, we now
consider the response to ‘ramp-flat’ forcing, which starts as a linear growth with time and
then becomes steady at a specified time t1, say: this could correspond to increasing CO2
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forcing for time t1 followed by a stabilised CO2 amount. The solution is equivalent to a
positive ramp followed by an equal and opposite negative ramp, and can be written

T ′(t) = γ τ

α

( t
τ

− 1 + e−t/τ
)

for 0 < t ≤ t1,

= γ τ

α

( t1
τ

− e−(t−t1)/τ + e−t/τ
)

for t ≥ t1. (8.19)

Equation (8.19) implies that as t → ∞ (or more precisely for t − t1 � τ ), the temperature
deviation tends to an ‘equilibrium’ value:

T ′(t) → Teqm ≡ γ t1
α

. (8.20)

This equilibrium temperature perturbation equals the forcing at time t1, F(t1) = γ t1,
divided by α: this is analogous to the definition of climate sensitivity in equation (8.14).
Moreover T ′ approaches Teqm from below, so Teqm is an upper bound on the temperature
in this model.

Figure 8.3(a) shows an example of the forcing as a function of time, with t1 = 70 years
and γ t1 = 3.7 W m−2. Figure 8.3(b) shows the corresponding temperature response for
three different values of τ . Note that when τ is much less than t1 (solid curve), the response

Fig. 8.3 Time dependence of the temperature response in the EBM to ‘ramp-flat’ forcing, with the
feedback parameter α = 1.2 W m−2 K−1. (a) The forcing as a function of time, with t1 = 70 years
and γ t1 = 3.7 W m−2. (b) The temperature response for τ = 10 years (solid), 30 years (dotted)
and 70 years (dashed); these correspond to three different values of C, by equation (8.9), since α

is specified. The thin horizontal dashed line shows Teqm, the thin vertical line shows time t1 and
the black circles show T′(t1).
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equilibrates fairly soon after time t1; however, when τ = t1 (dashed curve), the approach
to equilibrium is very much slower.

An important goal for climate-change modelling is to forecast the equilibrium tempera-
ture that would result from stabilisation of CO2 emissions, given information up to some
finite time, for example the stabilisation time t = t1. This is straightforward in principle
for the ramp-flat model, provided that the parameters are known. However, a practical
difficulty for climate modelling is that (as noted in Sections 8.2 and 8.3) the values of the
parameters α and C for the Earth’s climate system cannot be specified with confidence;
hence the FRT τ is not well constrained. Any theory has to allow for uncertainty in τ , and
this will lead to uncertainty in the ratio Teqm/T ′(t1) and hence in the forecast equilibrium
temperature based on the value at time t = t1. Figure 8.3(b) illustrates how this ratio varies
strongly as τ ranges from t1/7 to t1; see also Problem 8.6.

8.4 Climate feedbacks

We now look at climate feedbacks in more detail, taking account of the fact that the
temperature dependence of Q = F↓ − F↑ comes about partly through the dependence of
Q on a number of variables Vi, such as water vapour concentration, clouds, albedo and
tropospheric lapse rate, each of which depends on temperature. The quantity Q can also
depend on a further set of variables Uj, such as carbon dioxide concentration, that are
independent of temperature. We therefore replace Q = Q(T , U) by

Q = Q(T , V1(T), V2(T), . . . , VN (T), U1, U2, . . . , UM ). (8.21)

The definition (8.6) of climate feedback is replaced by

α = −∂Q
∂T

−
N∑

i=1

∂Q
∂Vi

dVi
dT

,

where the term ∂Q/∂T refers to the partial derivative of Q with respect to the first T
argument in equation (8.21), keeping all the Vi and Uj constant, and all derivatives are
evaluated at the steady state values (T , Uj) = (Tss, Ujss). The feedback parameter α may
be separated into its constituent parts,

α =
N∑

i=0

αi where α0 ≡ −∂Q
∂T

and αi ≡ − ∂Q
∂Vi

dVi
dT

for i ≥ 1.

It is found that α0 is generally larger in magnitude than the other αi. However, some of the
latter may be non-negligible compared with α0. Moreover, some of these – associated for
example with water vapour (see Section 8.4.2) and clouds – may have the opposite sign to
α0, and hence significantly reduce the total α.

With the form of Q given in equation (8.21) we can also define the radiative forcing
associated with a perturbation U ′

j in the variable Uj as
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Fj = ∂Q
∂Uj

U ′
j , (8.22)

by analogy with equation (8.7).

8.4.1 Black-body feedback

The simplest example of feedback occurs when the climate system acts as a black body at
unperturbed temperature Tss, and modifying effects due to the atmosphere are neglected.
We assume F↓ = F0 ≈ 240 W m−2, independent of temperature; the Stefan–Boltzmann
law (1.1) gives F↑ = σT4

ss, so

Q = F↓ − F↑ = F0 − σT4
ss = 0 (8.23)

in the steady state. Hence Tss equals the emission temperature Te ≈ 255 K, as in
Section 1.3.1. Taking α0 = −∂Q/∂Tss gives

α0 = 4σT3
ss = αBB ≡ 4σT3

e ≈ 3.8 W m−2 K−1;

we call αBB the black-body feedback. The fact that αBB > 0 expresses the physical result
that the power radiated by a black body increases with its temperature.

In the presence of an atmosphere the situation is more complicated. Equation (8.23) can
be replaced by

Q = F↓ − F↑ = F0 − σT4
e = 0

and if we have a functional relation between Te and Tss we can write

α0 = − ∂Q
∂Tss

= 4σT3
e

dTe

dTss
.

A simple model would be to take T4
e = εT4

ss, where ε < 1 is an equivalent emittance for
the atmosphere, assumed independent of temperature. In this case

α0 = 4σT3
e ε1/4 = ε1/4αBB.

An example is the radiative greenhouse model of Section 1.3.2, for which it is found from
equation (1.5) that ε = (1+Tlw)/(1+Tsw). However, it should be borne in mind that there
may not be any simple relationship between the global-mean values of Te and Tss in the
real atmosphere. Detailed general circulation models of the Earth’s climate can be used to
estimate α0 by applying height-independent temperature perturbations in the troposphere.
This gives a value of about 3.2 W m−2 K−1 corresponding to ε ≈ 0.5.

8.4.2 Water vapour feedback

Here Q = Q(T , V (T)), where V (T) is some measure of the water vapour content of the
atmosphere. In our simple zero-dimensional model we could, for example, take V to be the
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saturation mixing ratio at the mean surface pressure p∗,

V (T) = μs(T , p∗) ≡ μ∗(T).

This dependence of Q = F↓−F↑ on water vapour comes mainly from the OLR F↑, although
F↓ may also depend on water, through its dependence on water-vapour absorption in the
stratosphere and on the albedo, which in turn depends on clouds and ice.

The corresponding feedback parameter is

αwv = − ∂Q
∂μ∗

dμ∗
dT

,

and from the Clausius–Clapeyron equation (2.37), using μ∗(T) = εes(T)/p∗ from
equation (2.40), we have

dμ∗
dT

= μ∗L
RvT2 ,

which is clearly positive. Moreover, ∂Q/∂μ∗ is also generally positive, since the OLR F↑
decreases, and hence Q = F↓ − F↑ increases, with increasing amount of water vapour;
therefore αwv, unlike αBB, is negative. This implies that as the Earth warms (for example
as a result of increasing CO2), increasing water vapour amounts contribute a decrease in
OLR and so tend to warm the climate further.2 This is an example of positive feedback.

There is some ambiguity in the climate-change literature over the definitions of ‘positive’
and ‘negative’ feedback, and even in the definition of ‘feedback’ itself. The convention we
have used here is to define a non-black-body feedback αi as ‘positive’ if αi/αBB < 0 and
as ‘negative’ if αi/αBB > 0. However, an alternative definition is based on the sign of the
total feedback parameter α; as noted at the end of Section 8.3, our simple EBM is stable if
α > 0 and unstable if α < 0.

Detailed calculations show that −αwv/α0 ≈ 0.4 under present conditions. While this
implies that water vapour contributes a significant positive feedback, it is not sufficient
to make the sum α ≈ α0 + αwv negative; hence the climate in this model is stable. If
−αwv/α0 were to exceed 1, an unstable ‘runaway climate’ could develop; however, such
a possibility seems to require conditions that are far warmer than those encountered in
the present-day global-mean terrestrial climate. It has, however, been speculated that this
runaway greenhouse effect may have occurred on the planet Venus.

8.4.3 Other feedback processes

The net inward heat flux Q can depend on temperature in many other ways, and for each of
these we can define a climate feedback. Examples include feedback processes associated
with clouds, lapse rate, ice-albedo (see Problem 8.7), the carbon cycle, ocean circulation,
etc. Some of these are highly complex and are poorly understood at present: much current

2 However, it should be noted that the calculation used here is grossly over-simplified: the real atmosphere is not
at a uniform temperature, and we should really be considering an ensemble of air-parcel trajectories, with each
parcel retaining its mixing ratio until saturated. See Pierrehumbert et al. (2007).
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research is devoted to trying to understand and quantify the effects of these feedbacks on
climate change.

8.5 The radiative forcing due to an increase in carbon dioxide

Detailed calculations show that the radiative forcing due to a change of CO2 is approxi-
mately proportional to the logarithm of the fractional change of CO2 mixing ratio: if the
CO2 amount increases by a factor β, the radiative forcing is given to a good approximation
by

Fβ×CO2 = 5.3 ln β W m−2. (8.24)

In this section we give a simple, approximate, demonstration of the main physical princi-
ples that underlie this logarithmic dependence. We find that the spectral variation of the
transmittance of CO2 is an essential feature: a ‘grey gas’ model would fail completely.

The simplest relevant model takes the ground to be a black body at a ‘warm’ temperature
Tg, with Planck function Bνg ≡ Bν(Tg) (see equation (3.1)) at frequency ν, and represents
the troposphere by a thin slab at a uniform ‘cool’ temperature Tt < Tg, with Planck function
Bνt < Bνg and spectral transmittance Tν . The upward spectral irradiance at frequency ν

above the troposphere is given by emission from the ground (with emittance 1), decreased
by the tropospheric transmittance, plus emission from the troposphere (with emittance
1 − Tν):

F↑
ν = πTνBνg + π(1 − Tν)Bνt. (8.25)

(Note the analogy with the first line of equation (7.3) for the radiance received along a
single path through the whole depth of the atmosphere.) We refer to the upward spectral
irradiance as the spectral outgoing long-wave radiation, or SOLR for short.

The minimum possible value of Tν is 0, corresponding to a totally opaque troposphere;
in this case F↑

ν equals the black-body irradiance πBνt from the (top of) the troposphere.
The maximum possible value of Tν is 1, corresponding to a totally transparent troposphere,
when F↑

ν equals the surface black-body irradiance πBνg. For 0 < Tν < 1, equation (8.25)
shows that F↑

ν lies between these two extreme values.
For a single absorbing gas the tropospheric transmittance Tν can be approximated by

equation (3.23) modified by the diffusivity factor (see equation (3.16)):

Tν = exp
(

−1.66
∫

kν(z)ρa(z) dz
)

. (8.26)

Here the integral is taken over the depth of the troposphere, kν is the spectral absorption
coefficient and ρa is the absorber density.

We wish to find the radiative forcing due to a change in density of this absorber. Neglect-
ing any short-wave absorption, this radiative forcing is minus the change of SOLR just
above the troposphere, integrated over all frequencies. Let us suppose that the absorber
density increases by a factor β > 1 at each level z, from ρa(z) to βρa(z). Equation (8.26)
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Fig. 8.4 Plots of D(Tν) against Tν for β = √
2, 2, 2

√
2 and 4.

shows that, under this change, the tropospheric transmittance is raised to the power β, i.e. it
goes from Tν to T β

ν . In accordance with the definition of radiative forcing (see Section 8.1),
we assume that the temperatures of the ground and troposphere do not change under this
absorber change; the resulting change �F↑

ν in SOLR above the troposphere is therefore

�F↑
ν = π

(
Bνg − Bνt

)
�Tν . (8.27)

Here we have defined the change of tropospheric transmittance

�Tν ≡ T β
ν − Tν ≡ −D(Tν , β), say. (8.28)

For β > 1 and 0 < Tν < 1 this change of transmittance is negative, and D is positive:
hence equation (8.27) implies that the upward irradiance at the tropopause decreases under
the increase of absorber. Alternatively, in terms of equation (8.25), as the transmittance
decreases less SOLR comes from the warm surface and more from the cool troposphere,
leading to an overall decrease of the SOLR. However, D = 0 when Tν = 0 or 1, reflecting
the fact that the transmittance cannot change at frequencies where the troposphere is already
totally opaque or totally transparent.

Figure 8.4 shows the decrease in transmittance D(Tν , β) for the full range 0 ≤ Tν ≤ 1,
for the four values β = √

2, 2, 2
√

2 and 4. Note that D attains a maximum value Dmax(β)

somewhere in mid-range, with Dmax increasing with β. It can be shown that, for 1 < β ≤ 4,
Dmax(β) is given to a good approximation by

Dmax = 1
e

ln β. (8.29)

(See Problem 8.8.)
The value of Tν at each frequency ν, and hence the SOLR and the radiative forcing,

for a particular absorbing gas will depend on the amount of absorber and its spectroscopic
properties. We take the absorber to be carbon dioxide and concentrate on its main absorption
band: Figure 8.5(a) plots Tν against ν at high resolution and Figure 8.5(b) plots a smoothed
version of Tν (cf. Figure 3.14, which includes a low-resolution plot of the transmittance
of a vertical atmospheric column, plotted against wavelength). Focusing for clarity on the
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Fig. 8.5 (a) Spectrum of Tν for the main absorption band of CO2, plotted against frequency ν in THz and
also against wavenumber ν̃ in cm−1 and wavelength in μm, at a resolution of 0.3 GHz
(0.01 cm−1), based on data provided by Dr A. Dudhia. (b) A smoothed version of the same
spectrum: this is obtained by reordering the original spectrum with respect to frequency, to make
it monotonic in frequency on either side of the centre of the band. The range of variation of Tν

and the area under the curve are unchanged by the reordering.

smoothed spectrum, we note that, as ν increases, Tν drops from 1 to 0 between about 16
and 18 THz and then rises from 0 to 1 between about 22 and 24 THz. The maximum value
Dmax of D(Tν) will be attained at certain frequencies in these regions on the ‘flanks’, or
‘wings’, of the absorption band.

Outside these regions �Tν equals either 1−1 or 0−0, i.e. it is zero; so by equation (8.27)
the change �F↑

ν in SOLR is also zero there. Physically, there can be no change in SOLR
at those frequencies where the troposphere is either completely transparent (optically thin)
or completely opaque (optically thick): neither of these cases is affected by an increase in
absorber density.

Figure 8.6(a) shows the decrease in SOLR for the case β = 2, with Tg = 290 K
and Tt = 225 K chosen to represent a typical observed mid-latitude upper-tropospheric
temperature. This decrease has a peak, with maximum value π(Bνg − Bνt)Dmax, on each
flank of the absorption band. Figure 8.6(b) shows the decrease in SOLR divided by ln β, for
β = 2 and 4; the fact that the two curves are so close together indicates that the approximate
logarithmic dependence of Dmax in equation (8.29) carries over to −�F↑

ν at each frequency.
Another way of looking at this result is to plot the unperturbed SOLR, and the SOLR

under a doubling of CO2, against frequency: see Figure 8.7. Also plotted are πBν for the
surface and the troposphere (which is again given a typical observed upper-tropospheric
temperature). As expected from equation (8.25), both SOLR curves lie between the two
Planck function curves, rising to meet the surface curve outside the absorption band, and
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Fig. 8.6 (a) Decrease −�F↑
ν in SOLR given by equation (8.27) for a doubling of CO2 density (β = 2), based

on the smoothed spectrum on the right of Figure 8.5, with Tg = 290 K and Tt = 225 K. (b)

−�F↑
ν / ln β, for β = 2 (solid) and 4 (dotted).

Fig. 8.7 Unperturbed SOLR F↑
ν (solid), and the SOLR under a doubling of CO2 (dotted), based on the

smoothed spectrum on the right of Figure 8.5, plotted against frequency and wavenumber. Also
shown are πBν evaluated at the surface (dot-dashed) and at the tropopause (dashed), with
Tg = 290 K and Tt = 225 K.

falling to meet the tropopause curve inside it. As CO2 doubles, the SOLR decreases a little
at each wavenumber on the flanks of the CO2 band. The decrease from the unperturbed
case is given by the vertical distance between the two SOLR curves, and this is equal to
the function plotted in Figure 8.6(a). This decrease leads to a broadening of the ‘bite’ taken
out of the surface Planck function curve: see Pierrehumbert (2010).
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The final stage in the calculation of the radiative forcing is to integrate the spectral
results over frequency, i.e. to calculate the areas under the curves in Figure 8.6(b).3 (See
Problem 8.9.) The fact that these areas depend only weakly on β shows that the approximate
logarithmic dependence carries over to the radiative forcing F, which therefore takes the
form

F = −
∫ ∞

0
�F↑

ν dν ≈ A ln β, (8.30)

where A is a constant, in agreement with the form of equation (8.24). Note that the
logarithmic dependence does not depend on the detailed structure of the spectral lines, but
just on the fact that the tropospheric transmittance varies rapidly in frequency between 0 and
1 on each flank of the absorption band, so that the most significant values of the transmittance
change (almost proportional to ln β) are attained in a narrow range of frequencies there.
The integral is dominated by contributions from frequencies in these flank regions.

For comparison with Section 8.2, it is convenient to put U = ln ρ0, where ρ0 = ρa(0)

is the CO2 density at the ground. The change from ρ0 to βρ0 then corresponds to the finite
change �U = ln β, so equation (8.30) gives F ≈ A �U . This implies that equation (8.7)
holds without the ‘small perturbation’ assumption, given ∂Q/∂U = A.

The CO2 case should be contrasted with that of absorbers such as the chlorofluorocarbons,
which are optically thin at all frequencies, so that Tν is always close to 1 (i.e. it is always
close to the right-hand end of the range shown in Figure 8.4), and Dmax is never attained
at any ν. In this case we can show (e.g. by putting Tν = 1 − Aν , where Aν � 1) that
D(Tν) ∼ (β − 1)(1 − Tν). Therefore for such absorbers the radiative forcing is linear, not
logarithmic, in β: this is confirmed by detailed calculations.

Of course, our simple slab model is an extremely crude representation of the real
troposphere. However, it can be extended to a multi-level model in which the temperature
follows a specified lapse rate; the argument that we have used is applied at each level
within the troposphere, and then a vertical integral performed. Approximate logarithmic
dependence of the SOLR at each frequency is found, and essentially the same results follow.

Further reading

A good introduction to the physics of climate change is given by Hartmann (1994). The
advanced but readable book by Pierrehumbert (2010) covers the material of this chapter
in more detail, and goes much further – including, for example, the physics of climate
change in the Earth’s distant past and on other planets. The Fourth Assessment Report of
the Intergovernmental Panel on Climate Change, Working Group I (Solomon et al. (2007)),
gives a wealth of up-to-date information on climate change and the physical processes
contributing to it. Houghton (2009) provides an authoritative overview of the current

3 This is almost identical to integrating the unsmoothed functions, since the smoothing just reorders them with
respect to frequency. The Planck function is not reordered; however, it only varies slowly with frequency. Note
also that other CO2 absorption bands are present, as shown by Figure 3.14, but these are less important because
Bν is much smaller for the frequencies and temperatures involved.
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understanding of the science of climate change and its impacts on human society. See Bates
(2007) for a thorough discussion of the concept of ‘climate feedback’. The paper by Myhre
et al. (1998) provides detailed calculations of the radiative forcing due to changes in CO2
and other greenhouse gases.

Problems

Problem 8.1 Consider a model troposphere in the form of a thin slab at a temperature
Tt above a warmer black surface at temperature Tg. (This system need not be in radiative
equilibrium, i.e. non-radiative heat transfers could occur.) Suppose that the troposphere
contains a greenhouse gas whose absorption coefficient is independent of frequency in the
infra-red (this is called a ‘grey’ absorber) and whose infra-red transmittance is T . Show
that the upward irradiance above the troposphere is given by

F↑ = T σT4
g + (1 − T )σT4

t , (8.31)

where σ is Boltzmann’s constant.
Assuming that F↑ balances the unreflected incoming solar irradiance F0 = 240 W m−2,

and given that the tropospheric temperature Tt = 245 K, find the surface temperature Tg for
T = 0.1, 0.2 and 0.3. Show that the ‘greenhouse effect’ of the gas, defined as σT4

g − F0, is
proportional to T −1−1 and evaluate it in each case. Repeat the calculations for Tt = 225 K.
Comment on the implication of your answers.

Problem 8.2 Suppose that the troposphere in the previous problem contains two green-
house gases that are both grey absorbers and whose infra-red transmittances are T1 and
T2, both less than 1. Show that their combined transmittance is T1T2. Hence show that
the greenhouse effect of the combination of gases is not equal to the sum of their separate
greenhouse effects, except (approximately) when both gases are optically thin, i.e. when
T1 and T2 are both close to 1. (Hint for last part: put T1 = 1 −A1, where A1 is small, etc.)

Problem 8.3 Find an expression for the response of the EBM (8.8) to the exponentially
decaying pulse forcing (8.17). Verify the plot of the time-dependence of T ′ in Figure 8.2(c),
given τ = 30 years and t0 = 1.5 years. What scaling is used for T ′ in that figure? Find the
maximum negative temperature response, given F1 = −2 W m−2.

Problem 8.4 Find expressions for the response of the EBM (8.8) to the sinusoidal solar
cycle forcing (8.18), ignoring transients, i.e. find T ′ in the form a sin(ωt − φ), where the
amplitude a and phase lag φ are to be obtained. (Hint: it may be helpful to use complex
exponentials.) What are the values of the amplitude and the phase lag, given τ = 30 years
and F2 = 0.12 W m−2?

A hypothetical ‘equilibrium response’ to the forcing can be defined as the solution for
the case when the time-derivative on the left of equation (8.8) is ignored. Evaluate the ratio
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of a to the amplitude of the equilibrium response, given τ as above. Sketch the forcing, the
full solution and the equilibrium solution on the same time axis.

Problem 8.5

1. Using the formula given in equation (8.24), evaluate the radiative forcing F2×CO2

associated with a doubling of CO2.
2. Assuming an increase in CO2 concentration of 0.5% per year, evaluate the constant

γ = dF/dt in equation (8.15). If this rate were sustained, how many years would it take
for the concentration to double? How long would it take for the volume mixing ratio to
increase from a recent value of 385 ppmv (cf. Table 2.1) to 550 ppmv (approximately
double the pre-industrial value)?

3. Assuming that the only feedback process is black-body feedback, evaluate the climate
sensitivity under an instantaneous doubling of CO2. Given that the climate system has
a heat capacity C per unit horizontal area of 1 GJ K−1 m−2, evaluate the corresponding
feedback response time (FRT) τ .

4. The climate sensitivity in a complex climate-forecast model is in fact found to be
3 K under an instantaneous doubling of CO2. What value of the feedback param-
eter α does this correspond to? Assuming the same value of C as above, evaluate
the FRT in this case. Comment on the effects of non-black-body feedbacks in
this model.

5. Now suppose that errors in the climate-forecast model imply that the value of α obtained
above is uncertain to within ±50%. What are the corresponding ranges of uncertainty
of climate sensitivity and FRT? Comment on the distribution of these ranges about the
values established in the previous paragraph.

Problem 8.6 For the ‘ramp-flat’ model of Section 8.3.1, show that the ratio of the
equilibrium temperature perturbation to that at time t1 is a function of x = t1/τ only. Show
that this function is large for small x and tends to 1 for large x, and give a rough sketch of
it. Confirm that the shape of this function agrees with the results plotted in Figure 8.3.

For the three values of τ used in Figure 8.3, find the times at which T ′ reaches 90% and
99%, respectively, of its equilibrium value Teqm.

Problem 8.7 Consider a simple energy balance model including ice-albedo feedback, in
which the Earth’s albedo A varies strongly with the amount of ice cover: represent this by
allowing A to vary with temperature as follows:

A = 0.6 for T ≤ 265 K,

A = 0.3 for T ≥ 275 K,

A = 0.45 + 0.03 × (270 K − T) for 265 K ≤ T ≤ 275 K.

Hence modify equation (8.2) for F↓ appropriately; assume F↑(T) = 0.6 σT4, where the
emissivity factor 0.6 is a simple representation of the greenhouse effect.
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1. Give a brief physical explanation of the formula for A(T).
2. Show that this model has equilibrium (steady-state) solutions for a temperature T1 <

265 K (‘snowball Earth’) and a temperature T3 > 275 K, and evaluate T1 and T3. Draw
a sketch of F↓(T) and F↑(T) as functions of T . Show from your sketch that there is also
an equilibrium temperature T2 between 265 and 275 K. (Do not evaluate T2: it is in fact
about 269 K).

3. Find an expression for the feedback parameter α = −dQ/dT for this model, where
Q(T) = F↓ − F↑. From your sketch determine the sign of α at each equilibrium
temperature, and hence infer whether each equilibrium is stable or unstable. Comment
on the concept of ‘ice-albedo feedback’ in this model.

Problem 8.8 Given the function D defined by equation (8.28), show that its maximum
value for each β is

Dmax = β−1/(β−1) − β−β/(β−1).

Now show that Dmax can be written in terms of u ≡ ln β as

Dmax = exp
{ −u

eu − 1

}
− exp

{ −u
1 − e−u

}
.

Verify that Dmax is an odd function of u. By expanding to the first power in u show that

Dmax ∼ u
e

= 1
e

ln β as u → 0 , i.e. as β → 1. (8.32)

Without detailed calculation show that the next term in the expansion must be of order u3.
Verify that the approximation (8.29) for Dmax is about 8% too large at β = 4.

Problem 8.9 Use Figure 8.6 to obtain a rough estimate of the coefficient A of ln β in
equation (8.30) for the radiative forcing for CO2.
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This chapter is a short introduction to the use of models in atmospheric research and
forecasting. In Section 9.1 we explain how a hierarchy of models – simple, intermediate and
complex – can be used for gaining understanding of atmospheric behaviour and interpreting
atmospheric data. In Section 9.2 we give brief details of the numerical methods used in the
more complex theoretical models, while in Section 9.3 we outline the use of these models
for forecasting and other purposes. In Section 9.4 we describe an example of a class of
laboratory models of the atmosphere. Finally, in Section 9.5, we give some examples of
atmospheric phenomena that arise from interactions between basic physical processes and
that can be elucidated only with the aid of models of intermediate complexity.

9.1 The hierarchy of models

The basic philosophy of atmospheric modelling was outlined in Section 1.2. It was
mentioned there that a hierarchy of models, from simple to complex, must be used for under-
standing and predicting atmospheric behaviour; this hierarchy is illustrated in Figure 9.1.
The simple models (‘back-of-the-envelope’ or ‘toy’ models) involve a minimum number
of physical components and are described by straightforward mathematical equations that
can usually be solved analytically. These models provide basic physical intuition: most of
the models considered earlier in this book are of this type. The intermediate models involve
a small number of physical components but usually require a computer for solution of the
mathematical equations. Simple and intermediate models can provide valuable conceptual
pictures of atmospheric processes, but do not usually give accurate simulations of actual
atmospheric behaviour. The complex models (often called general circulation models
or GCMs) contain mathematical representations of a large number of physical processes.
These are the models that are used when accurate simulations are required.

Each type of model is motivated by atmospheric observations and each may help us
understand some aspect of atmospheric behaviour. The physical intuition provided by the
simplest models helps us interpret the intermediate models and the intermediate models
help us interpret the complex models. When a complex model fails to produce a reasonable
simulation of observed atmospheric behaviour, it may be necessary to use an intermediate
model (perhaps a ‘stripped-down’ version of the complex model) to find the cause.

The types of physical process that can be included in atmospheric models fall into three
main categories, each of which has been studied in earlier chapters.
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Fig. 9.1 Illustrating the use of a hierarchy of atmospheric models. Each type of model is motivated by,
and provides some insight into, atmospheric behaviour. The simpler models help us interpret the
more complex models. If a more complex model fails, a simpler model may help us to locate
the cause.

Fig. 9.2 Illustrating some of the interactions among dynamics, radiation and chemistry in the
atmosphere; see the text for details.

• Dynamical processes, including those parts of thermodynamics associated with the First
Law. These were introduced in Chapters 4 and 5.

• Radiation: this was introduced in Chapter 3, and some of its consequences for climate
change were explored in Chapter 8.

• Chemistry: some aspects of this were introduced in Chapter 6.

These three categories interact in complex ways in the atmosphere, as is partly illustrated
in Figure 9.2. Transport by dynamical processes carries chemicals from one part of the
atmosphere to another, for example vertically from ground level to the stratosphere, or
horizontally from the industrialised Northern Hemisphere to Antarctica; see Section 6.6.
The heating due to absorption of solar ultra-violet radiation by ozone may drive dynamical
processes. Solar radiation may be energetic enough to disrupt chemical bonds, leading
to photochemical reactions. In general, models incorporating even a few of these inter-
actions will be too complicated for simple analysis and so will be of ‘intermediate’ or
‘complex’ type.
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9.2 Numerical methods

As mentioned in Section 9.1, intermediate and complex models require us to solve the
mathematical equations describing the physics by means of computers. This is not an easy
task and may require extremely careful and efficient computer programming and huge
computer codes. In this section we describe some of the basic principles involved.

The equations describing the dynamics are generally partial differential equations, invol-
ving differentiation in space and time. Consider for example the x-momentum equation;
under the approximations discussed in Section 4.7.2 this can be written

∂u
∂t

= −u
∂u
∂x

− v
∂u
∂y

− w
∂u
∂z

+ f v − 1
ρ

∂p
∂x

+ F(x), (9.1)

by equations (4.23a) and (4.22). The physical meanings of the symbols are given in
Section 4.7.2, but are not important for the present discussion. The partial time derivative
of the eastward velocity u on the left-hand side of equation (9.1) can be approximated by a
finite difference: from the Taylor expansion

u(x, t + �t) = u(x, t) + �t
∂u(x, t)

∂t
+ O(�t2), (9.2)

where �t is assumed small, we have

∂u(x, t)
∂t

≈ u(x, t + �t) − u(x, t)
�t

.

Now suppose that all the quantities on the right-hand side of equation (9.1) are known at
time t; then this equation gives ∂u/∂t at time t and substitution into equation (9.2) gives u
at time t + �t, with an error of order �t2. A ‘time-step’ (in effect a forecast for a tiny time
interval) has therefore been performed. In principle, repeated use of this process allows
longer forecasts to be made.

The spatial derivatives on the right-hand side of equation (9.1) must also be calculated;
one way to do this is again by finite differences. The atmosphere is taken to be spanned
by a three-dimensional grid or lattice of points, with spacings �x, �y and �z, say, in the
eastward, northward and vertical directions, respectively.1 Then, for example, a simple
‘centred difference’ approximation to the pressure gradient ∂p/∂x is

∂p(x, t)
∂x

≈ p(x + �x, t) − p(x − �x, t)
2 �x

,

and other spatial derivatives can be represented in a similar way, thus allowing computation
of the terms on the right-hand side of equation (9.1). For current finite-difference models
used for numerical weather prediction (NWP), the horizontal grid spacing is typically
about 0.6◦ longitude by 0.4◦ latitude (corresponding to a grid scale of roughly 40 km in

1 In spherical geometry special precautions must be taken at the poles. Note also that in complex models pressure
coordinates (see Section 4.9) or other vertical coordinates are usually used instead of the height z.
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midlatitudes), with up to 50 vertical levels spaced at 50–100 hPa in pressure (and less than
50 hPa near the ground and the tropopause) and a total of about 107 grid-boxes.

An alternative is to calculate horizontal derivatives by spectral methods, that is, the
expansion of physical quantities in series of orthogonal functions whose derivatives are
known explicitly. Consider for example an x derivative again and focus for simplicity on an
f -plane (see Section 4.7.3) that is periodic in the x direction, with a period L that represents
the length of the latitude circle. A suitable expansion of u(x, t) is then a Fourier series of
the form

u(x, t) = ū(t) +
N∑

n=1

[
an(t) cos

(
2nπx

L

)
+ bn(t) sin

(
2nπx

L

)]
,

where N is called the truncation limit; the x derivative of u is

∂u(x, t)
∂x

=
N∑

n=1

[
2nπbn(t)

L
cos

(
2nπx

L

)
− 2nπan(t)

L
sin

(
2nπx

L

)]
.

In spherical coordinates it is convenient to expand in spherical harmonics
exp(imλ)Pm

n (cos φ), where λ is longitude, φ is latitude, Pm
n is an associated Legendre

polynomial and |m| ≤ n. Modern spectral NWP models include harmonics with values
of n up to about 800 (again corresponding to a smallest resolved scale of about 40 km);
finite differences are still usually used in the vertical. Since the equations of motion such
as equation (9.1) are non-linear, it is necessary to re-expand products of pairs of terms,
each represented by its own series, into single series. Fast numerical algorithms have been
developed for this purpose.

An ever-present danger in numerical modelling is the possibility of numerical insta-
bilities, that is, instabilities of the finite-differenced equations that are not present in
the real physical system being modelled. If they are left unchecked, these instabilities
may completely swamp the numerical solution; special care must be taken to avoid or
inhibit them.

Numerical problems in the modelling of radiation are of a different type. Here the most
important quantity to be calculated is the radiative heating rate, which is known in principle
from the solution to the radiative-transfer equation (3.10). However, the calculation must be
done for several absorbing gases, over a wide variety of wavelengths or frequencies, and for
atmospheric paths at different zenith angles. This would involve extensive computations
if it were carried out in full, so some of these calculations are often simplified. For
example, rather than attempting to integrate in frequency over every known spectral line
(the ‘line-by-line’ approach) one may work with a small number of band transmittances
(see equation (3.25)), averaged over spectral bands containing many lines. The presence of
clouds, which scatter and absorb the radiation, is a further complication.

If chemistry is to be included in a model, then coupled ordinary differential equations
representing the chemical reactions (see Sections 6.2 and 6.4) will be needed. Although
these appear less complicated than the partial differential equations of dynamics, there may
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still be difficulties in solving them numerically. For example, there may be a large number
of chemicals involved and hence a large number of equations in the set. Less obviously,
the possibility of both fast and slow reactions implies a disparity of natural time scales in
the differential equations, which are then said to be ‘stiff’ and require careful numerical
treatment.

9.3 Uses of complex numerical models

Over the past few decades the need for reliable weather forecasts has provided a strong
impetus for the development of complex atmospheric models, at least for the troposphere
and lower stratosphere. Numerical weather prediction models, for predicting a few days to
perhaps two weeks ahead, must include representations of large-scale dynamical processes,
small-scale frictional processes in the atmospheric boundary layer, small-scale drag due
to gravity waves, short-wave and long-wave radiative transfer, water-vapour transport, the
effects of clouds, precipitation and the transfer of heat, momentum and moisture between
the surface and the atmosphere. Some of these (such as cloud microphysical processes
and drag due to small-scale gravity waves) take place on length scales below the grid
size and are therefore not explicitly represented in the models. Such processes must be
parameterised, that is, expressed in terms of quantities that are explicitly represented.
Such parameterisations often involve empirical formulae that do not have rigorous physical
justification and may involve disposable constants whose values are poorly known. Much
of the art of NWP consists in selecting these constants in such a way as to optimise the
resulting forecasts.

Forecasts are made by integrating the equations of motion forwards in time, starting from
an observed initial state. Owing to measurement error and the inevitable sparsity of data in
some regions, the initial state may not be known with great accuracy. This can be a major
source of error in forecasts. In common with other chaotic processes, the evolution of the
atmosphere can be sensitive to initial conditions. One way to estimate the reliability of the
forecast model on any given occasion is to perform many forecasts, starting from slightly
different initial conditions. If all members of the ‘ensemble’ of forecasts are similar,
then a high degree of reliability can be placed on a representative forecast; however,
if the ensemble contains widely differing forecasts, less weight can be placed on any
of them.

Complex models are also used for climate forecasting, for years or decades into the
future. Here the focus is on the long-term behaviour of the atmosphere, perhaps averaged
over seasons, rather than on the detailed day-to-day evolution. On these longer time scales,
some physical processes that can be neglected in NWP must be included: for example, a
representation of oceanic heat transfer is needed. Much work is being done, for example,
to estimate the global and regional responses of the climate system to various possible
scenarios for the increase of greenhouse gases over the coming decades. Climate-prediction
models of this kind involve very heavy usage of computer resources, not only because they
must be run for many simulated years but also because of the variety of physical processes
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included and hence the complexity of the mathematical equations to be solved. Moreover,
great care must be devoted to examining and interpreting the huge quantity of data produced
by these models. However, computer power is now sufficient to allow large ensembles of
climate forecasts to be run: in this respect ‘distributed computing’, using the personal
computers of a large number of volunteers from the general public, is proving to be a
valuable approach.

Complex models of the NWP type are being used increasingly for data assimilation.
This is a procedure by which observed data (which may be incomplete, or inconsistent
because of measurement error) are fed into the model over a period of time. The model can
be regarded as an accurate representation of the known laws of physics and dynamics; it
adjusts the observations, within their expected error bounds, in such a way as to force them
to be closely consistent with these laws. The resulting ‘assimilated’ dataset thus represents
a dynamically and physically consistent interpolation of the observed evolution with time
of the atmosphere over the observation period. Data assimilation is also used for deriving
accurate initial conditions for weather forecasting.

Complex models are heavily used for research purposes, to help understand atmo-
spheric behaviour. In this mode they fit particularly well into the hierarchy described in
Section 9.1. A set of controlled experiments may be designed to investigate a particular
phenomenon – for example the development of the Antarctic ozone hole in a given year.
Simulations of the phenomenon are performed, using various initial conditions, represen-
tations of the chemical reactions and so on. Comparison of the resulting simulations with
observed data may help to identify which aspects of the initial conditions are most impor-
tant for the phenomenon or which chemical schemes are closer to reality. Intermediate
and simple models, for interpretation of the successful simulations and for investiga-
tion of the reasons why others are unsuccessful, may also play crucial roles in such an
investigation.

A further use for complex models is in the design of large measurement programmes,
by providing representative datasets on which observation strategies and data-analysis
schemes can be refined, in advance of the collection of the real data.

9.4 Laboratory models

A quite different approach from those described above is to use a laboratory apparatus
to model atmospheric phenomena. This has the advantage of providing a real physical
analogue, free from numerical errors; it may also be subjected to detailed and systematic
measurement in a way that may not be possible with the atmosphere. On the other hand,
great care must be taken to minimise the effects of physical properties of the laboratory
system that are irrelevant to the atmosphere.

A good example of a laboratory system that has been used extensively for modelling
atmospheric processes is the rotating annulus, which was developed by R. Hide in the
1950s and has been used by researchers over many years. The annulus consists of a ring-
shaped container of fluid, such as water, which is, for example, heated at the outer wall by
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Fig. 9.3 A schematic illustration of the rotating annulus, heated at the outer wall and cooled at the inner
wall. A ‘cut-away’ view is shown, with an indication of the azimuthal, vertical and radial
motion found at slow rates of rotation.

maintaining it at temperature To and cooled at the inner wall by maintaining it at temperature
Ti < To. The annulus is placed on a rotating turntable and rotated at a constant angular
speed � about its axis; see Figure 9.3. The fluid in the annulus mimics the atmosphere, the
rotation mimics the rotation of the Earth, the heating at the outer radius mimics the heating
of the atmosphere in the tropics and the cooling at the inner radius mimics the cooling at
high latitudes.

The fluid flow in the annulus takes a number of forms, depending on the speed of rotation
and the thermal contrast between the inner and outer walls. At slow rates of rotation, the flow
is basically in the azimuthal direction (corresponding to eastward flow in the atmosphere),
with a superimposed vertical and radial motion: rising on the heated outer wall, inward flow
along the top, descent on the inner wall and outward flow along the base (roughly analogous
to the observed mean meridional ‘Hadley circulation’ in the low-latitude atmosphere). This
flow has no azimuthal variation.

At faster rates of rotation the flow is no longer azimuthally symmetric, but rather forms
a number of wave-like patterns that drift in azimuth (see Figure 9.4); the number of wave-
lengths around the annulus depends on the speed of rotation. These waves are related to
the baroclinic instabilities discussed in Section 5.7. At certain rates of rotation the num-
ber of wavelengths or the amplitude of the waves may pulsate slowly: this pulsation is
called vacillation. At high rates of rotation, the wave-like flow breaks down to a rather
chaotic state reminiscent of some disturbed atmospheric flows. It turns out that an ana-
logue of the β-plane (see Section 4.7.3) can be constructed by sloping the top and bottom
walls of the annulus, which allows Rossby waves to be simulated. Extensive observa-
tional and theoretical analysis has been carried out on this type of laboratory system,
and similar theoretical analysis has been carried out on numerical models of the annulus
flow. Despite there being some obvious differences from the atmosphere (for example
the much greater role of viscosity and the presence of side-walls in the laboratory ana-
logue) the rotating annulus has provided much insight into atmospheric (and also oceanic)
behaviour.
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Fig. 9.4 Flow regimes in a rotating annulus in which velocities near the upper surface are made visible by
‘streak photography’, i.e. by illuminating suspended particles with a flat light beam and taking a
time exposure with a camera mounted on the rotating apparatus. The rotation rate � increases
from frame (a) to frame (f). Note the azimuthally symmetric flow in (a), the increasing number of
wavelengths in the azimuthal direction in (b) to (e) and the breakdown to irregular flow in (f).
From Hide and Mason (1975), courtesy of Taylor & Francis Ltd, http://www.informaworld.com.

9.5 Final remarks

As noted in Section 9.1, most of the models considered in this book have been of the
simplest type; we have generally concentrated on single atmospheric processes in isola-
tion, ignoring interactions with other processes. This approach is essential for developing
a basic physical intuition for the atmosphere. However, the number of atmospheric phe-
nomena that may be described fully in terms of one type of process alone is limited, so
for most purposes interactions between processes must be invoked if a reasonably com-
plete physical description is to be provided. This usually means that models of at least
intermediate complexity must be used. In this concluding section we give some exam-
ples of such physical descriptions that have been developed with the help of intermediate
models.

http://www.informaworld.com
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9.5.1 The height of the tropopause

A climatological zonal-mean temperature field for January was given in Figure 1.5 and
some physical processes that help determine this field were outlined in Section 1.4.1. It
was noted there that even a basic understanding of the processes determining the position
of the tropopause – the interface between the troposphere and stratosphere – involves the
interaction between radiation and dynamics. Except in the winter polar regions and in the
tropics, radiation is the primary process determining the temperature structure in the lower
stratosphere; here ozone absorbs infra-red and solar radiation, causing heating which is
mostly balanced by long-wave cooling. On the other hand, dynamical processes such as
convection and baroclinic instability (see Section 5.7) are important for heat transport in the
troposphere. In the presence of moisture, convection tends to relax the tropospheric lapse
rate towards the saturated adiabatic lapse rate (see Section 2.8); the effects of baroclinic
instability are more subtle. All of these processes must be taken into account if the position
of the tropopause is to be modelled properly; however, although many comprehensive
general circulation models produce good simulations of the tropopause height, a complete
physical understanding is still lacking.

9.5.2 The middle-atmosphere temperature field

Other aspects of the zonal-mean temperature field also depend on the interplay between
dynamics and radiation. It was mentioned in Section 6.6 that there is a large-scale meridional
mass circulation in the middle atmosphere, sketched in Figure 6.4, that is driven by wave
motions. The full details are beyond the scope of this book; suffice it to say that non-linear
and dissipative processes associated with upward-propagating gravity waves drive the
summer-to-winter solstitial circulation in the upper mesosphere, including rising motion in
the mesosphere over the summer pole and descent over the winter pole, and that non-linear
and dissipative processes associated with upward-propagating midlatitude Rossby waves
drive the Brewer–Dobson circulation in the stratosphere. As well as being important for
tracer transport, as noted in Section 6.6, these circulations also influence the temperature
field. It was mentioned in Section 3.6.4 that radiative processes act rather like a ‘spring’,
which tries to pull the temperature field towards a purely radiative equilibrium. Such an
equilibrium would include warm temperatures in the summer upper mesosphere and near the
tropical tropopause, and cool temperatures in the stratospheric polar night. The dynamically
driven meridional circulation acts against the radiative spring, forcing temperatures below
equilibrium values in the regions of rising motion in the summer upper mesosphere and
near the tropical tropopause, and forcing temperatures above equilibrium values in the
region of descent in the winter (especially the northern winter) stratosphere.

9.5.3 The Antarctic ozone hole

The Antarctic ozone hole, described in Section 6.7, provides an example of an atmospheric
phenomenon in which chemical, dynamical (particularly transport) and radiative effects are
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all significant. Dynamically driven transport is of course important for carrying ozone from
the ozone-production regions at low latitudes to the polar regions; it also carries chlorine
compounds from industrial regions to the Antarctic stratosphere. On the other hand, the
polar winter vortex in the Southern Hemisphere is much less disturbed by Rossby wave
activity than is the northern winter vortex, so temperatures are closer to the cold radiative-
equilibrium values. At such cold temperatures polar stratospheric clouds can form, upon
which the crucial heterogeneous chemical reactions that provide the ozone-destroying
chlorine compounds take place. Later in the Antarctic spring, when the polar vortex breaks
down (owing to dynamical influences), transport may carry ozone-depleted air to lower
latitudes, thus perhaps leading to a decrease in the amount of ozone over a larger region
than the Antarctic alone.

Further reading

A brief introduction to numerical modelling of the atmosphere is given by Holton (2004)
while the book by Kalnay (2002) provides a comprehensive account and also includes a
discussion of data assimilation. For an example of the use of distributed computing to study
climate change, see Stainforth et al. (2005) for some results from the climateprediction.net
experiment. Read (1993) gives a critical account of applications of the ideas of chaos theory
to the atmosphere and to laboratory analogues of the atmosphere.

Recent work on the processes controlling the height of the midlatitude tropopause is
reported by Thuburn and Craig (1997) and Thuburn and Craig (2000). The processes
controlling the temperature of the cold equatorial tropopause are discussed by Holton et al.
(1995). For the summer mesopause see Andrews et al. (1987).
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In this appendix, STP denotes the standard temperature 273.15 K = 0 ◦C and pressure
1013.25 hPa = 1 atm. The hectopascal (hPa = 102 Pa) is used as the unit of pressure; it is
equivalent to the millibar used in older works. Note that, in SI units, the gramme mole (mol)
should strictly speaking be replaced by the kilogramme mole, or kilomole (kmol = 103 mol).

Table A.1

Constant Symbol Numerical value

Universal constants
Universal gas constant R 8.31 J K−1 mol−1

or (SI value) 8.31 × 103 J K−1 kmol−1

Avogadro’s number NA 6.02 × 1023 mol−1

or (SI value) 6.02 × 1026 kmol−1

Planck constant h 6.63 × 10−34 J s
Boltzmann constant kB 1.38 × 10−23 J K−1

Speed of light c 3.00 × 108 m s−1

Stefan–Boltzmann constant σ 5.67 × 10−8 W m−2 K−4

(Note that σ = 2π5k4/(15h3c2))

The Earth
Mean acceleration due to

gravity at the Earth’s surface g 9.81 m s−2

The Earth’s mean radius a 6371 km
The Earth’s mean rate of

rotation � 7.29 × 10−5 s−1

Standard surface pressure p0 1013.25 hPa

The Sun
Solar constant Fs 1370 W m−2

Mean distance between
the Earth and the Sun 1.50 × 1011 m

Mean radius of the Sun 6.96 × 108 m

(continued)
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Table A.1 (cont.)

Constant Symbol Numerical value

Dry air
Molar mass of dry air M 28.97 kg kmol−1

Density of dry air at STP ρ0 1.29 kg m−3

Specific heat capacity of dry air at STP:
at constant pressure cp 1005 J K−1 kg−1

at constant volume cv 718 J K−1 kg−1

Specific gas constant for dry air Rd 287 J K−1 kg−1

Water
Molar mass of water Mw 18.02 kg kmol−1

Density of liquid water at STP ρw 1000 kg m−3

Density of ice at STP ρi 917 kg m−3

Specific heat capacity of water
vapour at 0 ◦C:

at constant pressure 1850 J K−1 kg−1

at constant volume 1390 J K−1 kg−1

Specific heat capacity of liquid
water at 0 ◦C 4217 J K−1 kg−1

Specific heat capacity of ice at 0 ◦C 2106 J K−1 kg−1

Specific gas constant for water vapour Rv 461 J K−1 kg−1

Specific latent heat of vaporization
at 0 ◦C Lv 2.50 × 106 J kg−1

Specific latent heat of vaporization
at 100 ◦C L 2.26 × 106 J kg−1

Specific latent heat of fusion at 0 ◦C Lf 0.33 × 106 J kg−1

Specific latent heat of sublimation
at 0 ◦C Ls 2.83 × 106 J kg−1

(Note that Ls = Lv + Lf )

Sources include Kaye and Laby (1986) and Lide (1995).



B Appendix B Derivation of the equations
of motion in spherical coordinates

In this appendix we derive the atmospheric equations of motion (4.21) in spherical coor-
dinates, starting with the Navier–Stokes equation (4.20). In terms of the unit vectors i, j
and k, the velocity vector can be written as u = ui + vj + wk and the rotation vector
� = �(j cos φ + k sin φ). Note that the unit vector �̂ = �/� = j cos φ + k sin φ is fixed
in space, if the small variations in the Earth’s rotation are neglected.

Now i, j and k change with time, following the motion, and this must be taken into
account when calculating the components of Du/Dt; we get

Du
Dt

= Du
Dt

i + Dv

Dt
j + Dw

Dt
k + u

Di
Dt

+ v
Dj
Dt

+ w
Dk
Dt

.

The material derivatives of the unit vectors can be calculated as follows. Note first that
k = r/r, where r is the position vector and r is its magnitude. Then

Dk
Dt

= D
Dt

( r
r

)
= 1

r
Dr
Dt

− r
r2

Dr
Dt

.

However, Dr/Dt = u and Dr/Dt = w, so

Dk
Dt

= u
r

− kw

r
= 1

r
(ui + vj). (B.1)

Next use the fact that the unit vector �̂ = j cos φ + k sin φ is constant. This implies that

0 = D�̂

Dt
= cos φ

Dj
Dt

− v sin φ

r
j + sin φ

Dk
Dt

+ v cos φ

r
k, (B.2)

since Dφ/Dt = v/r. Substitution of equation (B.1) into equation (B.2) then leads to

Dj
Dt

= −u tan φ

r
i − v

r
k. (B.3)

Now

i = j × k, (B.4)

by orthogonality of the unit vectors. So

Di
Dt

= Dj
Dt

× k + j × Dk
Dt

. (B.5)
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Substitution from equations (B.1) and (B.3) into equation (B.5) and use of equation (B.4)
and the analogous identity j = k × i, together with the identity k × k = 0, gives

Di
Dt

= u tan φ

r
j − u

r
k. (B.6)

Alternative, geometrical, derivations of equations (B.1), (B.3) and (B.6) are given in Section
2.3 of Holton (2004).

The Coriolis term in equation (4.20) can be written

2� × u = 2�(w cos φ − v sin φ)i + 2�u sin φ j − 2�u cos φ k.

In terms of the small incremental distances dx = r cos φ dλ in the eastward direction,
dy = r dφ in the northward direction and dz = dr in the vertical direction, the pressure
gradient term in equation (4.20) can be written

∇p = ∂p
∂x

i + ∂p
∂y

j + ∂p
∂z

k.

Neglecting the centripetal acceleration, equation (4.20) can therefore be written
Du
Dt

i + Dv

Dt
j + Dw

Dt
k

+ u
r
(u tan φ j − uk) − v

r
(u tan φ i + vk) + w

r
(ui + vj)

+ 2�(w cos φ − v sin φ)i + 2�u sin φ j − 2�u cos φ k

+ 1
ρ

(
∂p
∂x

i + ∂p
∂y

j + ∂p
∂z

k
)

+ gk = F,

where F = F(x)i+F(y)j+F(z)k is the frictional force. When the frictional force is provided
by molecular viscosity alone, then F = Fvisc. Collecting the terms in i, j and k, we then
get equation (4.21a), equation (4.21b) and equation (4.21c), respectively, as required.
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numerical, 218
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Intergovernmental Panel on Climate Change
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internal energy, 25, 31, 113
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Köhler curve, 46
Kelvin’s formula, 44
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molecular, 2, 53, 54, 57, 157
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laboratory models of the atmosphere, 220
Lagrangian picture of fluid flow, 97–99,
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Lambert’s law, 60
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dry adiabatic (DALR), 27, 28
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lifting condensation level, 35, 50
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local thermodynamic equilibrium (LTE),
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lower atmosphere, see troposphere

mass conservation law, 95, 98, 112, 162
material derivative, 97, 107
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mesosphere, 8, 12, 13, 80

circulation of, 164, 223
middle atmosphere, 8

diabatic heating of, 80, 113
meridional circulation, 223
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ozone, 158, 160

numerical methods, 217
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odd oxygen, 158–160
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outgoing long-wave radiation (OLR), 196,
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oxygen, 1, 8, 21, 72–74, 80, 152, 158, 159
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hole, Antarctic, 16, 164, 165, 181, 220, 223
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transport of, 163

parameterisation, 219
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phase changes, 2, 33
phase speed, 14
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photo-ionisation, 53, 73
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photon, 52

absorption of, 8, 53
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Planck’s law, 54, 57
planetary wave, see Rossby wave
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available, 32, 49, 125
total, 31, 32

potential temperature, 26, 27, 30, 35, 114
equivalent, 40, 41
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potential vorticity, 121, 122, 128, 161
quasi-geostrophic (QGPV), 128, 133, 135, 145

inversion, 128, 135
Poynting vector, 59, 125
pressure coordinates, 111, 116, 177

quantum yield, 157
quasi-biennial oscillation, 12
quasi-geostrophic

equations, 126, 133
flow, 144

radar, 12, 128, 183
Doppler shift, 187

radiance, 58
spectral, 54, 55, 57, 173, 180, 182

radiation
black-body, 54
infra-red

absorption of, 72
far, 52
near, 52
thermal, 52

long-wave, see radiation, thermal
short-wave, see radiation, solar
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absorption of, 7, 10, 76
thermal, 6, 53, 172

absorption of, 7
ultra-violet, 9

absorption of, 73
radiative equilibrium, 6, 80, 81, 83, 84
radiative forcing, 196, 199–202, 212

due to carbon dioxide, 202, 207, 211, 213
radiative-transfer equation, 61, 69, 78, 83,
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range resolution, 185, 186, 189
Raoult’s law, 45
rate coefficient, 153, 154, 156, 159
Rayleigh friction, 149
reaction

chemical, 151, 153
bimolecular, 154, 155, 168
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photochemical, 1, 8, 15, 53, 157, 216
relative humidity, 34, 42–46
remote sounding, 3, 171, 173, 179, 182
Rossby number, 109, 115, 126, 133
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rotational
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satellite observations, 164, 172–181
saturated adiabatic curve, 39, 41
saturation vapour pressure (SVP), 33, 34
scale analysis, 107
scale height

density, 122
pressure, 23, 49
water vapour, 49

scattering
cross-section, differential, 185
Mie, 53
Rayleigh, 53, 180, 189
simple model of, 86

Schwarzschild’s equation, see radiative-transfer
equation

skin temperature, 85
sloping convection, see instability, baroclinic
solar constant, see total solar irradiance
solar spectrum, 71
source function, 60
specific humidity, 20, 34
spectral band, 64, 70, 72, 208
spectral line, 64, 66

broadening, 67, 68
Doppler, 68, 91
Lorentz, 67, 90, 91
strength, 66
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spherical coordinates, 104
static stability, 28, 30
Stefan–Boltzmann law, 5, 59, 205
stratification, density, 2, 49, 123, 144
stratopause, 8, 9
stratosphere, 8, 12, 81

ozone in, 3, 158–161
temperature of, 83

stratospheric warming, 13
stretching term, 127
sublimation, 36, 37, 51
synoptic-scale systems, 107

tangent plane, 106
tephigram, 40, 50

thermal windshear balance, 11, 109,
112, 116

thermodynamic energy equation, see
thermodynamics, first law of

thermodynamic equilibrium, 54
Thermodynamics, First Law of, 24,

113, 151
thermosphere, 8
thickness between pressure surfaces, 24
total ozone, see column ozone
Total Ozone Mapping Spectrometer (TOMS),

164, 181
total solar irradiance (TSI), 5, 198
tracer of atmospheric motion, 122, 161
transmittance, 6, 69, 173, 207, 212
transport of chemicals, 21, 161, 216
triple point, 36
tropopause, 8, 9, 11, 163, 223
troposphere, 8, 10

tropical, 10, 147
two-stream approximation, 84

upper atmosphere, 9

vibrational
state, 54, 63, 64, 66
transition, 64, 66, 72–74

viscosity, 101, 221
eddy, 136, 139, 141

vorticity, 119–121, 135
absolute, 121, 127
relative, 121

vorticity equation, 127

water vapour, 1, 32–34, 36–38, 42, 43, 46, 47, 64,
72, 80, 113, 187, 196, 197, 204, 205

diffusion of, 46
weather, 8, 17

forecasting, 17, 219
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weighting function, 178–181, 193
window, atmospheric, 72, 192
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